非边幻和图的若干定理及证明  被引量:1

Some Theorems and Proofs of Non-Edge-Magic Total Labeling Graphs

在线阅读下载全文

作  者:顾彦波 李敬文[1] 邵淑宏 王笔美 GU Yanbo;LI Jingwen;SHAO Shuhong;WANG Bimei(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,Gansu,China)

机构地区:[1]兰州交通大学电子与信息工程学院,甘肃兰州730070

出  处:《武汉大学学报(理学版)》2020年第3期237-243,共7页Journal of Wuhan University:Natural Science Edition

基  金:国家自然科学基金(11461038)。

摘  要:若G(p,q)的点边标号一一映射到{1,2,…,p+q},使得任意边与其关联顶点的标号值之和为一个常数,这种标号被称之为边幻和全标号。本文设计了一种算法得到了9个点以内所有简单无向连通图中的非边幻和图,发现其中一些图具有某种相同的特征,因此定义了新的图运算符Kn▷Cm和KnΔSm来刻画这两类联图,通过引入西顿序列,证明了在特定条件下,两类联图为非边幻和图。If the labeling values of edges and vertices for a graph G(p,q)are mapped one by one to{1,2,…,p+q},the sum of the labeling values for the edge and its incident vertices equals to a constant,and this labeling is called edge-magic total labeling.In this paper,an algorithm is designed to find all non-edge-magic total labeling graphs of all simple undirected connected graphs within 9 vertices.And we also find that some of the graphs have the same characteristics,thus define the new graph's operational characters Kn▷Cm and KnΔSm to depict them.Finally,by introducing the Sidon sequence,it is proved that two types of composite graphs are non-edge-magic total labeling graphs under certain conditions.

关 键 词:边幻和全标号 非边幻和图 算法 联图 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象