检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李鑫荣 修乃华[1] 罗自炎[1] LI Xinrong;XIU Naihua;LUO Ziyan(School of Science,Beijing Jiaotong University,Beijing 100044,China)
出 处:《运筹学学报》2020年第2期23-41,共19页Operations Research Transactions
基 金:国家自然科学基金(Nos.11971052,11771038)。
摘 要:低秩矩阵优化是一类含有秩极小或秩约束的矩阵优化问题,在统计与机器学习、信号与图像处理、通信与量子计算、系统识别与控制、经济与金融等众多学科领域有着广泛应用,是当前最优化及其相关领域的一个重点研究方向.然而,低秩矩阵优化是一个NP-难的非凸非光滑优化问题,其研究成果并非十分丰富,亟待进一步深入研究.主要从理论和算法两个方面总结和评述若干新结果,同时列出相关的重要文献,奉献给读者.Low-rank matrix optimization is a class of matrix optimization problems with rank minimization or rank constraint.With wide applications ranging from statistics and machine learning,signal and image processing,communication and quantum computing,system identification and control,to economics and finance,low-rank matrix optimization is currently a key research direction in optimization and related fields.However,due to the intrinsic non-convexity and discontinuity in the rank function,low-rank matrix optimization is generally NP-hard.Existing research results in this direction are not very rich,and further research is urgently needed.In this paper,we mainly summarize and review some latest research results on low-rank matrix optimization in theory and in algorithm,along with related important references,so as to dedicate to readers.
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222