SPECTRAL PROPERTIES OF DISCRETE STURM-LIOUVILLE PROBLEMS WITH TWO SQUARED EIGENPARAMETER-DEPENDENT BOUNDARY CONDITIONS  被引量:1

在线阅读下载全文

作  者:Chenghua GAO Yali WANG Li LV 高承华;王雅丽;吕莉(Department of Mathematics,Northwest Normal University,Lanzhou 730070,China)

机构地区:[1]Department of Mathematics,Northwest Normal University,Lanzhou 730070,China

出  处:《Acta Mathematica Scientia》2020年第3期755-781,共27页数学物理学报(B辑英文版)

基  金:The authors are supported by National Natural Sciences Foundation of China(11961060,11671322);the Key Project of Natural Sciences Foundation of Gansu Province(18JR3RA084).

摘  要:In this article,we consider a discrete right-definite Sturm-Liouville problems with two squared eigenparameter-dependent boundary conditions.By constructing some new Lagrange-type identities and two fundamental functions,we obtain not only the existence,the simplicity,and the interlacing properties of the real eigenvalues,but also the oscillation properties,orthogonality of the eigenfunctions,and the expansion theorem.Finally,we also give a computation scheme for computing eigenvalues and eigenfunctions of specific eigenvalue problems.

关 键 词:Discrete Sturm-Liouville problems squared eigenparameter-dependent boundary conditions INTERLACING oscillation properties ORTHOGONALITY 

分 类 号:O241.6[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象