检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐伟 郑威[1] 钱炜 刘健 XU Wei;ZHENG Wei;QIAN Wei;LIU Jian(School of Electronics and Information,Jiangsu University of Science and Technology,Zhenjiang 212000,China)
机构地区:[1]江苏科技大学电子信息学院,江苏镇江212000
出 处:《计算机技术与发展》2020年第7期135-139,共5页Computer Technology and Development
基 金:国家自然科学基金(61601206);江苏省自然科学基金(BK20160565);江苏省高校自然科学研究项目(15KJB310003)。
摘 要:深度学习作为近年来快速发展的崭新技术可以有效帮助研究目标检测和模式识别,在信号与信息处理领域成为研究热点。针对胎儿心电信号难以提取导致胎心率检测困难,设计了一种深度学习模型。该模型使用了卷积神经网络结构,并且结合了批量标准化和Dropout技术,可以在不去除母体心电信号的情况下直接检测胎儿QRS波群。该方法首先在PhysioNet上选取母体腹部心电信号作为实验数据集,然后通过样本熵进行信号质量评估,预处理去除电力线干扰和基线漂移干扰,最后分段进行短时傅里叶变换将一维心电信号转化为二维时频图,再通过卷积神经网络进行分类。实验结果表明,该方法可以取得较高的灵敏度(86.98%)、阳性预测值(88.35%)和准确率(78.03%)。通过对比支持向量机和BP神经网络两种算法在相同数据集上的准确率,验证了卷积神经网络在分类性能上更具有优势。Deep learning,as a new technology developed rapidly in recent years,can effectively help research target detection and pattern recognition,and has become a research hotspot in the field of signal and information processing. A deep learning model is designed to detect fetal heart rate due to the difficulty in extracting fetal ECG signals. With the convolutional neural network structure,combined with batch normalization and dropout technology,the model can be able to directly detect fetal QRS complexes without removing maternal ECG signals. In this method,maternal abdominal ECG signals are first selected as the experimental data set on the PhysioNet,then the sample entropy method is used for signal quality assessment,and power line interference and baseline drift interference are removed by preprocessing. Finally,one-dimensional ECG signals can be converted to two-dimensional time-frequency diagrams through short-time Fourier transform by segmenting,and then the classification is carried out by convolutional neural network. Experiment shows that the proposed method can achieve higher sensitivity(86.98%),positive predictive value(88.35%) and accuracy(78.03%). By comparing the accuracy of SVM and BP neural network on the same data set,it is verified that convolutional neural network has more advantages in classification performance.
关 键 词:深度学习 信号与信息处理 卷积神经网络 QRS波群 分类
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15