检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄易 申国伟 赵文波 郭春[1,2] HUANG Yi;SHEN Guo-wei;ZHAO Wen-bo;GUO Chun(Department of Computer Science and Technology,Guizhou University,Guiyang 550025,China;Guizhou Provincial Key Laboratory of Public Big Data,Guizhou University,Guiyang 550025,China)
机构地区:[1]贵州大学计算机科学与技术学院,贵阳550025 [2]贵州大学贵州省公共大数据重点实验室,贵阳550025
出 处:《计算机科学》2020年第7期292-298,共7页Computer Science
基 金:国家自然科学基金(61802081);贵州省科技重大专项计划项目(20183001);贵州省科技计划(20161052,20171051)。
摘 要:威胁情报分析可为网络攻防提供有效的攻防信息,而细粒度的挖掘即网络威胁情报数据中的安全实体及实体间的关系,是网络威胁情报分析研究的热点。传统的机器学习算法,在被应用到大规模网络威胁情报数据分析中时,面临着稀疏、高维等问题,进而难以有效地捕获网络信息。为此,针对网络安全漏洞的分类问题,文中提出了一种基于漏洞威胁模式的网络表示学习算法——HSEN2vec。该算法旨在最大限度地捕获异构安全实体网络的结构和语义信息,并从中获得安全实体的低维向量表示。该算法首先基于漏洞威胁模式获取异构安全实体网络的结构信息,随后通过Skip-gram模型建模,并通过负采样技术进行有效预测进而得到最终的向量表示。实验结果表明,在国家安全漏洞数据上,与其他方法相比,利用所提算法进行漏洞分类的准确率等评价指标有所提升。Threat intelligence analysis can provide effective attack and defense information for network attack and defense,and fine-grained mining,that is,the relationship between security entities and entities in network threat intelligence data,is a hotspot of network threat intelligence analysis research.Traditional machine learning algorithms,when applied to large-scale network threat intelligence data analysis,face sparse,high-dimensional and other issues,and thus it is difficult to effectively capture network information.To this end,a network representation learning algorithm based on vulnerability threat schema——HSEN2vec for the classification of network security vulnerabilities is proposed.The algorithm aims to capture the structure and semantic information of the heterogeneous security entity network to the maximum extent,and obtains the low-dimensional vector representation of the security entity.In the algorithm,the structural information of the heterogeneous security entity network is obtained based on the vulnerability threat schema,and then modeled by the Skip-gram model,and the effective prediction is performed by the negative sampling technique to obtain the final vector representation.The experimental results show that in the national security vulnerability data,compared with other methods,the learning algorithm proposed in this paper improves the accuracy of vulnerability classification and other evaluation indicators.
分 类 号:TP393.0[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195