基于CNN的人脸图像亮度和清晰度质量评价  被引量:5

Quality assessments of illumination and sharpness of face image based on CNN

在线阅读下载全文

作  者:黄法秀 高翔 吴志红[1] 陈虎[1,3] HUANG Fa-xiu;GAO Xiang;WU Zhi-hong;CHEN Hu(Sichuan University National Key Laboratory of Fundamental Science on Synthetic Vison,Chengdu 610065,China;College of Computer,Sichuan University,Chengdu 610065,China;Wisesoft Limited Company,Chengdu 610045,China)

机构地区:[1]四川大学视觉合成图形图像技术国防重点学科实验室,四川成都610065 [2]四川大学计算机学院,四川成都610065 [3]四川川大智胜软件股份有限公司,四川成都610045

出  处:《计算机工程与设计》2020年第7期2004-2010,共7页Computer Engineering and Design

基  金:国家重点研发计划基金项目(2016YFC0801100)。

摘  要:为提高人脸识别的准确率,提出基于CNN的人脸图像亮度和清晰度的质量评价方法,拒绝低质量人脸图片参与识别和认证。利用人脸识别匹配器的相似性分数与人类视觉系统清晰度等级分类方法,结合传统亮度分级方法,将人脸图像分成9类并建立相应的数据标签,基于数据标签和数据集训练CNN模型并进行实验。实验结果表明,模型在人脸图像质量的亮度和清晰度方面有了较为准确的评价,准确率达到90%以上。EVR曲线整体FNMR值变化明显,验证了分类的有效性,评价结果对人脸识别系统回路的动态调整有实际指导意义。To improve the accuracy of face recognition,a quality evaluation method of face image brightness and sharpness based on CNN was proposed to reject low quality face images to participate in recognition and authentication.The similarity score of face recognition matcher and the definition grade classification method of human visual system were used.Combining with the traditional brightness classification method,the face image was divided into nine categories and the corresponding data labels were established.The CNN model was trained and experimented based on data labels and dataset.Experimental results show that the model has more accurate evaluation of the brightness and sharpness of face image quality,and the accuracy is more than 90%.The overall FNMR value of EVR curve changes obviously,which verifies the effectiveness of classification.The evaluation results have practical guiding significance for the dynamic adjustment of face recognition system loop.

关 键 词:人脸识别 人脸图像质量 亮度 清晰度 卷积神经网络(CNN) 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象