检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王戈 WANG Ge(School of Computer, Kaifeng Vocational College of Culture and Arts, Kaifeng 475000, Henan, China;School of Computer and Information Engineering, Henan University, Kaifeng 475000, Henan, China)
机构地区:[1]开封文化艺术职业学院计算机学院,河南开封475000 [2]河南大学计算机与信息工程学院,河南开封475000
出 处:《地震工程学报》2020年第3期799-805,共7页China Earthquake Engineering Journal
基 金:国家自然科学基金项目(51186259)。
摘 要:为改善传统的基于机器学习的网络入侵检测方法只能检测已知入侵行为,对于未知入侵行为的检测存在误警率高、时效性差的不足,提出一种基于混沌算法的地震信息网络入侵检测方法。创建候选地震信息网络特征-混沌变量映射模型,实现变量之间的转化;采用混沌变量迭代演化算法进行地震信息网络特征选择;使用支持向量机对最优特征进行学习,为提高地震信息网络入侵检测精度,利用柯西蜂群算法对支持向量机参数进行寻优,建立网络入侵检测优化模型。仿真实验证明,基于混沌算法的地震信息网络入侵检测方法能有效实现高检测率、低误报率的入侵检测,具有很高的应用优势。The traditional machine-learning-based network intrusion detection method can only detect the known intrusion behavior and has the disadvantages of high false alarm rate and poor timeliness when detecting unknown intrusion behavior.In this study,a new seismic information network intrusion detection method based on the chaos algorithm is proposed.First,the candidate seismic information network feature–chaos variable mapping model is created to enable the transformation between variables,and the chaos variable iterative evolution algorithm is used to select seismic information network features.Then,the support vector machine is used to learn optimal features.Finally,to improve the detection accuracy of seismic information network intrusion,the Cauchy bee colony algorithm is adopted to optimize the parameters of the support vector machine,and the optimization model of network intrusion detection is established.The simulation experiment results show that the seismic information network intrusion detection method based on the chaos algorithm can effectively implement intrusion detection with high detection rate and low false alarm rate,thus having high application advantage.
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.201