线性分类器与神经网络在数据处理方面的应用  

在线阅读下载全文

作  者:陈琦轩 余华云[1] 

机构地区:[1]长江大学计算机科学学院,湖北荆州434023

出  处:《电脑知识与技术》2020年第16期198-199,202,共3页Computer Knowledge and Technology

摘  要:在机器学习诞生之时起,线性回归分类器便体现出优越的性能,然而,随着时代的进步,每类训练样本数量增大,线性分类器的速度变得很慢,也凸显了线性分类的一个致命弱点:对大样本数据束手无策。即当用于训练的样本数量大于样本的维数时,线性分类器会无法工作。解决的办法之一是对分类器作局部化处理从而对数据进行筛选,避免大样本数据问题的出现。然而,随着神经网络的兴起,对于大样本数据的处理,也有了更多的新兴的处理办法。

关 键 词:机器学习 线性回归分类器 局部化处理 神经网络 大样本数据 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象