基于GF(2^8)域上的机密文件分解分存与恢复  被引量:1

Decomposition and recovery of confidential file based on GF(2^8)domain

在线阅读下载全文

作  者:刘海峰 熊梦 梁星亮 LIU Hai-feng;XIONG Meng;LIANG Xing-liang(School of Arts and Sciences, Shaanxi University of Science & Technology, Xi′an 710021, China)

机构地区:[1]陕西科技大学文理学院,陕西西安710021

出  处:《陕西科技大学学报》2020年第4期152-158,共7页Journal of Shaanxi University of Science & Technology

基  金:陕西省科技厅自然科学基础研究计划项目(2017JQ1026);陕西省教育厅专项科研计划项目(17JK0102)。

摘  要:在(t,n)门限方案的基础上提出一种新的基于有限域GF(28)的方案:将机密文件中连续的t个字节分为一组,分组构造GF(28)域上的(t-1)次多项式,每组多项式生成n个不同的点分别存入n个文件中;当需要再现机密文件时,从n个文件任选至少t个文件并抽取同序号的数据利用拉格朗日插值重构(t-1)次多项式,继而获得机密文件的t个数据,实现机密文件的恢复.计算实例以及编程实验分析表明:这一方案是合理与可行的,与传统基于插值多项式的秘密分享方法相比,所提方法在运行效率上有所提升了,更适合大文件数据.Based on the(t,n)threshold scheme,a new algorithm based on finite field GF(28)for confidential file decomposition,partitioning and recovery is proposed:The consecutive t bytes in secret files are divided into a group,and the(t-1)degree polynomials on the GF(28)field are constructed in groups.Each group of polynomials generates n different points and stores them in n files;When it is necessary to reproduce confidential documents,at least t files are selected from n files and the data with the same serial number are extracted.The(t-1)polynomial is reconstructed by Lagrange interpolation,and then t data of confidential documents are obtained to restore confidential documents.Calculation examples and programming experiments show that this scheme is reasonable and feasible.Compared with the traditional secret sharing method based on interpolating polynomials,the proposed method improves the operation efficiency and is more suitable for large file data.

关 键 词:LAGRANGE插值多项式 有限域GF(2^8) (T N)门限 效率 

分 类 号:TP390.2[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象