检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕敏 LYU Min(Southwest China Institute of Electronic Technology,Chengdu 610036,China)
出 处:《电讯技术》2020年第7期803-808,共6页Telecommunication Engineering
摘 要:信号的指纹特征是辐射源个体识别的重要依据。针对敌我识别辐射源的个体识别问题,提出了一种基于双树复小波和多重分形的信号暂态特征提取方法。该方法通过双树复小波变换实现信号多分辨率分解,求解分解信号Hilbert谱的信息熵和指数熵,计算信号的多重分形奇异指数和谱值,最终组成表征辐射源的特征向量。通过实验验证,提取的特征向量能充分代表辐射源个体之间的差异;被测信号的信噪比满足8 dB或9 dB的条件时,对辐射源的识别正确率能达到90%以上。统计分析表明该方法提取的特征具有很高的稳定性。The fingerprint feature of signal is an important basis for specific emitter identification(SEI).Forthe problem of SEI for identification of friend or foe(IFF),a new method of signal transient feature extrac-tion based on dual-tree complex wavelet and multifractal is proposed.In this method,multi-resolution sig-nal decomposition is realized by dual-tree complex wavelet transform(DT-CWT),information entropy andexponential entropy of the decomposed signal Hilbert spectrum are solved,multifractal singular index andspectral value of the signal are calculated,and finally the eigenvector representing the emitter is formed.The experimental results show that the extracted eigenvector can fully represent the differences between thespecific emitters.When the signal-to-noise ratio(SNR)of the measured signal meets the conditions of 8 dB or 9 dB,the recognition accuracy of the emitter can reach more than 90%.The statistical analysis showsthat the features extracted by this method have high stability.
关 键 词:敌我识别 暂态特征 指纹特征提取 双树复小波 特征降维
分 类 号:TN958.96[电子电信—信号与信息处理] TN971[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.190.40