级联H桥逆变器的多特征融合CNN故障诊断  被引量:4

Multi-feature fusion CNN fault diagnosis of cascaded H-bridge inverter

在线阅读下载全文

作  者:杨俊杰 谢维成 曹倩 YANG Junjie;XIE Weicheng;CAO qian(School of Electrical and Electronic Information,Xihua University,Chengdu 610039,China;Sichuan Zhongce Radiation Technology Co.,Ltd.,Chengdu 610021,China;School of Automation,Chongqing University,Chongqing 400044,China)

机构地区:[1]西华大学电气与电子信息学院,四川成都610039 [2]四川中测辐射科技有限公司,四川成都610021 [3]重庆大学自动化学院,重庆400044

出  处:《中国测试》2020年第7期8-17,共10页China Measurement & Test

基  金:国家自然科学基金(61174401);教育部“春晖计划”(Z2018087);四川省科技计划资助项目(2019ZYZF0145)。

摘  要:针对级联H桥七电平逆变器不同故障表现相似程度高以及浅层分类器难以应对高维特征输入而制约故障诊断准确性的问题,该文提出一种基于多特征融合CNN的级联H桥七电平逆变器故障诊断策略。首先,采集原始三相电流信号,并结合参考电流信号求取电流偏差信号;其次,多尺度主元分析(multi-scale principal component analysis,MSPCA)算法通过将变分模态分解与主元分析相结合筛选故障信息存在的尺度分量,并将得到的各尺度分量直接重构作为高维时域特征输入,对得到的各尺度分量进行希尔伯特黄(HHT)变换,提取边际谱作为高维时频域特征输入;最后,将上述两种特征作为双通道CNN模型的输入进行训练,建立最终的多特征融合CNN故障诊断模型。结果表明:所提方法的故障诊断准确率达到95%,相较于单一特征与浅层分类器相结合的故障诊断策略,具有更高的识别率和更强的适应性,可为基于电信号的高相似度故障的分类识别提供一定参考。Aiming at the problems of high similarity in different fault performance of cascaded H-bridge sevenlevel inverter and the difficulty of shallow classifiers to cope with high-dimensional feature inputs,which restricts the accuracy of fault diagnosis,this paper proposes a fault diagnosis strategy for cascaded H-bridge seven-level inverter based on multi-feature fusion CNN.Firstly,the original three-phase current signal is collected,and the current deviation signal is obtained by combining the reference current signal.Secondly,the multi-scale principal component analysis(MSPCA)algorithm,which combines variational mode decomposition and principal component analysis,is used to select the several component from original signal.On the basis of above,the Hilbert-Huang transform(HHT)marginal spectrum was used to extract the highdimensional fault features from the selected component as time-frequency features,and the high-dimensional fault features reconstructed from selected component at various scales were used as time-domain features.Finally,The above two features are used as the input of the two-stream CNN model to establish the final multifeature fusion CNN fault diagnosis model.The results show that the fault diagnosis accuracy of the proposed method is 95%,which has higher recognition rate and stronger adaptability than the fault diagnosis strategy combined with single feature and shallow classifier.The research in this paper can provide a reference for fault diagnosis of the cascaded H-bridge seven-level inverter.

关 键 词:级联H桥七电平逆变器 故障诊断 多尺度主元分析 双流CNN 多特征融合 

分 类 号:TM711[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象