检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘可真[1] 苟家萁 骆钊[1] 王科 徐肖伟 赵勇军 LIU Kezhen;GOU Jiaqi;LUO Zhao;WANG Ke;XU Xiaowei;ZHAO Yongjun(Faculty of Electric Power Engineering,Kunming University of Science and Technology,Kunming 650500,Yunnan Province,China;Electric Power Research Institute of Yunnan Power Grid Co.,Ltd.,Kunming 650217,Yunnan Province,China;Yunnan Electric Power Technology Co.,Ltd.,Kunming 650000,Yunnan Province,China)
机构地区:[1]昆明理工大学电力工程学院,云南省昆明市650500 [2]云南电网有限责任公司电力科学研究院,云南省昆明市650217 [3]云南电力技术有限责任公司,云南省昆明市650000
出 处:《电网技术》2020年第7期2778-2784,共7页Power System Technology
基 金:国家自然科学基金项目(51907084);云南电网有限责任公司科技项目(YNKJXM20180736);昆明理工大学引进人才科研启动基金项目(KKSY201704027)。
摘 要:电力变压器作为电网中传输和变换电能的主要设备,对油中溶解气体的浓度进行有效预测,可为变压器的故障诊断及状态评估技术提供一定的理论依据。鉴于此,提出一种基于粒子群优化算法(particle swarm optimization,PSO)与长短期记忆网络(long-shorttermmemory,LSTM)的变压器油中溶解气体浓度预测方法。首先该模型以油中溶解的7种特征气体浓度序列作为可视输入;然后通过使用粒子群优化算法对长短期记忆网络中相关超参数进行迭代优化;最后构建PSO-LSTM组合模型对油中溶解气体的浓度进行预测。该模型克服了依据经验选取参数而导致预测精度低的问题。算例分析结果表明,相较于传统预测算法,所提方法可以更好地追踪油中溶解气体浓度的变化规律,提高了预测精度,为电力变压器安全稳定运行提供了有力保障。As the main equipment of power transmission and transformation in grid,the effective prediction of the dissolved gas concentration in the transformer oil can provide a certain theoretical basis for the transformer fault diagnosis and state assessment.Therefore,this paper proposes a method for predicting the concentration of the dissolved gas in the transformer oil based on the particle swarm optimization(PSO)and the long-short term memory(LSTM).Firstly,the model takes the concentration sequence of the seven characteristic gases dissolved in the oil as a visual input.Then,the(PSO)is used to optimize the relevant super parameters in the LSTM.Finally,a PSO-LSTM combined model is constructed to predict the concentration of the dissolved gas in the oil.The model overcomes the problem of low prediction accuracy caused by selecting parameters based on experience.The results of examples show that,compared with the traditional prediction algorithms,the proposed method in this paper can better track the variation rule of the dissolved gas concentration in the oil,effectively improve the prediction accuracy,and provide a strong guarantee for the safe and stable operation of the power transformer.
关 键 词:变压器 粒子群优化 长短期记忆网络 油中溶解气体 预测
分 类 号:TM85[电气工程—高电压与绝缘技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46