机构地区:[1]中国民航大学电子信息与自动化学院,天津300300 [2]中国民航大学天津市智能信号与图像处理重点实验室,天津300300 [3]中国民航大学基础实验中心,天津300300
出 处:《交通运输工程学报》2020年第3期225-236,共12页Journal of Traffic and Transportation Engineering
基 金:国家自然科学基金项目(61571442);天津市教委科研计划项目(2018KJ246);中央高校基本科研业务费专项资金项目(3122018S008,3122019110)。
摘 要:提出了一种结合区域分割和Wishart分类器的极化合成孔径雷达图像机场跑道区域快速检测方法;利用简单线性迭代聚类算法分割极化合成孔径雷达图像,并将分割得到的超像素作为后续分类处理的基本单元;采用一种优化后的距离度量方式给超像素分配类别标签,解决了传统Wishart距离度量因子冗余运算量大的问题;分析了机场跑道区域像素的极化散射特性,利用机场跑道区域的弱散射特性从分类结果中提取感兴趣区域;利用机场跑道的结构特征筛选辨识感兴趣区域,进而确定机场跑道区域的准确位置;利用极化合成孔径雷达实测数据测试了算法的有效性,并与传统基于像素的检测结果进行对比。试验结果表明:该算法在复杂大场景下能够快速有效检测出机场跑道区域,检测出的跑道轮廓清晰,结构比较完整;采用简单线性迭代聚类算法预处理图像极大地降低了后续处理的复杂性;针对墨西哥湾试验数据,Wishart分类器处理单元个数分别是Freeman+Wishart算法和FCM+Wishart算法的1.0%和2.4%,整个检测过程耗时分别为Freeman+Wishart算法和FCM+Wishart算法的9.9%和27.1%;针对大岛试验数据,Wishart分类器处理单元个数分别是Freeman+Wishart算法和FCM+Wishart算法的1.0%和2.6%,整个检测过程耗时分别为Freeman+Wishart算法和FCM+Wishart算法的14.0%和31.8%。可见,所提检测方法的实时性能优于基于像素的检测方法。A fast detection method of airport runway area using polarimetric synthetic aperture radar images was proposed based on region segmentation and Wishart classifier.A simple liner iterative clustering algorithm was utilized to partition polarimetric synthetic aperture radar image into many super-pixels,and these super-pixels were regarded as basic units for subsequent classification processing.An optimized distance measurement method was adopted to assign appropriate category labels for the super-pixels,greatly solving the problem of large redundant computation of traditional Wishart distance measurement factor.The polarization scattering characteristics of the pixels in airport runway area were analyzed,and the interest regions were extracted from the classification results using the weak scattering characteristic of airport runway area.The structural characteristics of airport runway were used to select and identify the extracted interest regions,thereby the accurate location of airport runway region was determined.The validity of the proposed algorithm was tested by the measured data from polarimetric synthetic aperture radar,and the detection results were compared with the traditional pixel-based detection results.Experimental result shows that in the large complicated scenes,the algorithm can detect the runway area fast and effectively,and the detected runway has clear outline and relatively complete structure.Using the simple linear iterative clustering algorithm to preprocess the images reduces the complexity of subsequent processing significantly.Based on the experimental data in the Gulf of Mexico,the processing unit number of Wishart classifier is only 1.0%and 2.4%of the numbers of Freeman+Wishart algorithm and FCM+Wishart algorithm,respectively,and the whole detection time is 9.9%and 27.1%of those of Freeman+Wishart algorithm and FCM+Wishart algorithm,respectively.Based on the experimental data in the Big Island,the processing unit number of Wishart classifier is only 1.0%and 2.6%of those of Freeman+Wish
关 键 词:交通信息 机场跑道区域检测 极化合成孔径雷达 简单线性迭代聚类 Wishart距离度量因子 结构特征
分 类 号:V249.3[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...