基于FA-IACS算法的车辆路径问题优化  被引量:4

Optimization of vehicle routing problem based on FA-IACS algorithm

在线阅读下载全文

作  者:刘巍巍[1] 孙宇彤 安小宇 高鑫禹 孙晨曦 LIU Wei-wei;SUN Yu-tong;AN Xiao-yu;GAO Xin-yu;SUN Chen-xi(School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China;School of Electrical Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

机构地区:[1]沈阳工业大学机械工程学院,沈阳110870 [2]郑州轻工业大学电气信息工程学院,郑州450002

出  处:《沈阳工业大学学报》2020年第4期442-447,共6页Journal of Shenyang University of Technology

基  金:辽宁省自然科学基金计划重点项目(20170540673);辽宁省教育厅重点科技计划项目(LZGD2017038)。

摘  要:针对传统蚁群系统算法在解决有容量约束的普适性车辆路径优化中易陷入局部最优和收敛速度慢等问题,提出了一种改进的蚁群系统算法.采用改进的距离启发函数因子调整蚂蚁状态转移概率,利用改进编码方式的萤火虫算法作为搜索机制,改善蚁群系统的全局搜索能力,应用信息素震荡程序探索新路径的信息素,避免陷入局部最优.结果表明,该算法提高了全局搜索能力,能够节约寻找最优路径的时间,加快收敛速度,具有更好的鲁棒性.Aiming at the problem that the traditional ant colony system algorithm is easy to fall into local optimum and slow to converge in the optimization of general vehicle routing with capacity constraints,an improved ant colony system algorithm was proposed.The state transition probability of ants was adjusted with an improved distance heuristic function factor.A firefly search with improved coding modes was introduced as search mechanism to improve the global search ability of ant colony system.The pheromone oscillation program was applied to explore the pheromone of new routes and avoid falling into local optimum.The results show that the as-proposed algorithm can improve the global search ability,save the time for finding the optimal route,speed up the convergence speed,and exhibit better robustness.

关 键 词:启发函数因子 萤火虫编码 萤火虫搜索 信息素震荡 FA-IACS算法 改进蚁群算法 萤火虫算法 车辆路径问题 

分 类 号:TH165[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象