检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈浩[1] 秦志光[1] 丁熠[1] CHEN Hao;QIN Zhiguang;DING Yi(School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu Sichuan 610054,China)
机构地区:[1]电子科技大学信息与软件工程学院,成都610054
出 处:《计算机应用》2020年第7期2104-2109,共6页journal of Computer Applications
基 金:国家自然科学基金广东联合基金资助项目(U1401257)。
摘 要:脑胶质瘤的分割依赖多种模态的核磁共振成像(MRI)的影像。基于卷积神经网络(CNN)的分割算法往往是在固定的多种模态影像上进行训练和测试,这忽略了模态数据缺失或增加问题。针对这个问题,提出了将不同模态的图像通过CNN映射到同一特征空间下并利用同一特征空间下的特征来分割肿瘤的方法。首先,不同模态的数据经过同一深度CNN提取特征;然后,将不同模态的特征连接起来,经过全连接层实现特征融合;最后,利用融合的特征实现脑肿瘤分割。模型采用BRATS2015数据集进行训练和测试,并使用Dice系数对模型进行验证。实验结果表明了所提模型能有效缓解数据缺失问题。同时,该模型较多模态联合的方法更加灵活,能够应对模态数据增加问题。Glioma segmentation depends on multi-modal Magnetic Resonance Imaging(MRI)images.Convolutional Neural Network(CNN)-based segmentation algorithms are often trained and tested on fixed multi-modal images,which ignores the problem of missing or increasing of modal images.To solve this problem,a method mapping images of different modalities to the same feature space by CNN and using the features in the same feature space to segment tumors was proposed.Firstly,the features of different modalities were extracted through the same deep CNN.Then,the features of different modal images were concatenated,and passed through the fully connected layer to realize the feature fusion.Finally,the fused features were used to segment the brain tumor.The proposed model was trained and tested on the BRATS2015 dataset,and verified with the Dice coefficient.The experimental results show that,the proposed model can effectively alleviate the problem of data missing.At the same time,compared with multi-modal joint method,this model is more flexible,and can deal with the problem of modal data increasing.
关 键 词:多模态 脑肿瘤分割 同一特征空间 卷积神经网络 核磁共振成像 数据缺失
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.253.54