考虑光伏出力与电动汽车接入的配电网空间负荷预测  被引量:4

Space load forecasting considering photovoltaic output and electric vehicle access

在线阅读下载全文

作  者:孙洲 崔立超 王冰[2] 张秋桥 许奇超 SUN Zhou;CUI Li-chao;WANG Bing;ZHANG Qiu-qiao;XU Qi-chao(State Grid Shaoxing Power Supply Company,Shaoxing 312000,China;College of Energy and Electrical Engineering,Hohai University,Nanjing 211100,China)

机构地区:[1]国网绍兴供电公司,浙江绍兴312000 [2]河海大学能源与电气学院,江苏南京211100

出  处:《电子设计工程》2020年第15期133-138,共6页Electronic Design Engineering

基  金:国网浙江省电力有限公司科技项目(5211SX1800BO)。

摘  要:随着分布式光伏的发展以及电动汽车的接入对配电网的影响,传统的空间负荷预测已经不能满足要求,因此本文提出了考虑光伏出力以及电动汽车接入的空间负荷预测方法。首先基于LSSVM与负荷密度指标法预测传统空间负荷;然后,根据规划区的光伏影响因素预测光伏输出功率大小,采用蒙特卡洛算法模拟电动汽车的充电负荷;最后,将光伏输出功率、电动汽车充电功率与传统空间负荷叠加得出总的空间负荷。以绍兴市某城区为例,预测结果表明,考虑了光伏出力以及电动汽车接入会明显的提高空间负荷预测的精度。With the development of distributed photovoltaic and the impact of the access of electric vehicles on the distribution network,the traditional spatial load forecasting cannot meet the requirements.Therefore,a spatial load forecasting method considering photovoltaic output and electric vehicle access is proposed in this paper.Firstly,the traditional spatial load was predicted based on LSSVM and load density index method,and then the photovoltaic output power is predicted according to the photovoltaic influence factors in the planning area.Monte Carlo algorithm is adopted to simulate the charging load of electric vehicles,and finally the photovoltaic output power,electric vehicles charging power and traditional space load are superimposed to obtain the total space load.Taking an urban area in Shaoxing city as an example,the prediction results show that the accuracy of spatial load prediction can be significantly improved by considering photovoltaic output and electric vehicle access.

关 键 词:空间负荷预测 负荷密度指标法 分布式光伏 电动汽车 蒙特卡洛算法 

分 类 号:TN06[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象