检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王昱 尹爱军[1] WANG Yu;YIN Ai-jun(State Key Laboratory of Mechanical Transmission,College of Mechanical Engineering,Chongqing University,Chongqing 400044,China)
机构地区:[1]重庆大学机械工程学院机械传动国家重点实验室,重庆400044
出 处:《装备环境工程》2020年第7期64-69,共6页Equipment Environmental Engineering
基 金:重庆市重点研发项目(cstc2018jszx-cyztzxX0032)。
摘 要:目的实现齿轮箱故障类型的智能识别诊断。方法针对传统故障诊断方法通用性不广、数据依赖强、泛化能力弱并需人工提取特征问题,提出一种基于条件变分自编码器的故障诊断方法。以故障类别概率分布为目标并将振动信号频谱作为条件,通过条件变分自编码器,建立齿轮箱振动信号频谱到对应各故障下的条件概率模型,并通过多层神经网络结合变分推断方法进行训练优化,实现对齿轮箱各类型故障的高精度分类诊断。结果在仅有少量训练数据条件下,实现了准确的故障识别。结论条件变分自编码器在齿轮箱振动信号频谱概率分布建模上具有优异性能,对故障信号数据量的依赖低、泛化能力强,无需人工提取特征。能有效实现齿轮箱故障的智能分类诊断。The paper aims to realize intelligent fault type diagnosis of gearbox. A fault diagnostic method based on variational auto-encoder with condition(CVAE) was proposed to solve the shortcoming of traditional fault diagnosis methods of poor universality, strong data dependence, weak generalization ability and manual feature extraction demand. High accuracy identification of all kinds of gearbox faults were realized by building a conditional probability model of frequency spectrum of gearbox vibration signal through CVAE with the spectrum of vibration signal as condition, which was optimized by variational inference combined with multi-layer neural network. Accurate fault identification was realized with only a small amount of training data. CVAE has excellent performance in modeling frequency spectrum probability distribution of gearbox vibration signal with low dependence on fault signal data, strong ability of generalization, needlessness of manually extract features and can realize intelligent identification and diagnose of gearbox faults effectively.
分 类 号:TP211[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15