检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李江[1] 李春[2] 许子非 金江涛 Li Jiang;Li Chun;Xu Zifei;Jin Jiangtao(School of Management,Qiannan Nationality Professional Technology College,Duyun 558022,China;Energy and Power Engineering Institute,University of Shanghai for Science and Technology,Shanghai 200093,China)
机构地区:[1]黔南民族职业技术学院管理学院,都匀558022 [2]上海理工大学能源与动力工程学院,上海200093
出 处:《电子测量与仪器学报》2020年第5期65-74,共10页Journal of Electronic Measurement and Instrumentation
基 金:贵州省高校人文社科项目(2018ZC097)资助。
摘 要:为提取淹没于环境和结构噪声下风力机轴承故障信号,基于能量追踪法,提出改进变分模态分解法(improved variational mode decomposition, IVMD),并采用粒子群算法求解最优约束因子,获取准确模态分量;摒弃传统对故障特征频分量的提取,基于非线性分形理论提出多重分形谱特征因子(multi-fractal spectrum,MFC)以选取最具非线性特征的模态分量,以不同故障程度及状态的轴承加速度信号为对象,采用优化递归变分模态分解获取多分量,通过多重分形谱特征因子最大值选取有效信息分量,通过支持向量机进行故障分类。结果表明优化递归变分模态分解可准确分解振动信号至不同频段,以便故障信息提取;多重分形谱特征因子与信噪比呈正相关,以其最大值选取的分量具备更多有效信息;对IVMD-MFC所选取非线性分量,通过8种非线性特征值构建特征矩阵,通过BP神经网络实现故障分类,诊断准确度达97.5%。表明所提出方法可对不同故障程度的轴承状态进行区分。In order to extract the wind turbine bearing fault signal submerged under environmental and structural noise,a recursive variational mode decomposition method is proposed based on the energy tracking method,and the particle swarm optimization algorithm is used to solve the optimal constraint factor to obtain the accurate modal component.Based on the nonlinear fractal,the theory proposes a multifractal spectral feature factor to select the best modal component.Taking the fault degree and the loaded bearing acceleration signal as the object,the optimized recursive variational mode decomposition is used to obtain multiple components.The effective information component is selected by the maximum value of the multifractal spectral feature factor,and the fault classification is performed by the support vector machine.The results show that the optimized recursive variational mode decomposition can accurately decompose the vibration signal to different frequency bands for fault information extraction;the multifractal spectrum feature factor is positively correlated with the signal to noise ratio,and the component selected by its maximum value has more effective information;The BPNN is used to classified the hybrid fault degrees of different states,the test samples are constructed by selected components by IVMD-MFC with eight nonlinear characteristics.The diagnostic accuracy is 97.5%.There is a good performance in hybrid fault degree of different status classification.
分 类 号:TP306.3[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.228.10