检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡兴泉[1] 涂宇欣 葛亚坤 杨哲[1] Cai Xingquan;Tu Yuxin;Ge Yakun;Yang Zhe(School of Information Science and Technology,North China University of Technology,Beijing 100144,China)
出 处:《系统仿真学报》2020年第7期1279-1286,共8页Journal of System Simulation
基 金:国家自然科学基金(61503005);北京市社会科学基金(19YTC043);北方工业大学毓优人才培养项目(NCUTYY08)。
摘 要:针对传统叶片识别易受环境干扰,难以实现复杂背景下的多叶片实时识别问题,提出一种基于CNN网络和多任务损失函数的实时叶片识别方法。采用CNN网络提取叶片图像特征图,输入到RPN网络生成区域候选框;依据特征图和区域候选框,提取候选框特征图,分别进行叶片分类和边界框回归,预测叶片类别和叶片预测框的定位;利用多任务损失函数约束分类和回归,来提高叶片分类和回归的准确率和运算速度。实验结果表明,该方法的平均实时叶片识别准确率为91.8%,平均实时识别速度为25 fps。Aiming at the problems that the traditional leaf recognition is susceptible to the environmental interference and is difficult to realize the multi-leaf real-time recognition in complex background,a real-time leaf recognition method based on CNN network and multi-task loss function is proposed.The CNN network is used to the extract image feature maps and input them into RPN network to generate regional proposals.On the basis of the feature maps and region proposals,the feature map is proposaled,the leaf classification and bounding box regression are performed respectively,and the leaf classification and position of the leaf prediction box are predicted.The multi-task loss function is used to constrain the classification and regression to improve the accuracy and speed of the leaf image classification and regression.Experimental results show that the average real-time leaf recognition accuracy is 91.8%,and the average real-time leaf recognition speed is 25 fps.
关 键 词:叶片识别 特征图 CNN网络 多任务损失函数 区域候选框
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15