检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁永锋 YUAN Yong-feng(Department of Philosophy,Sun Yat-sen University,Zhuhai Guangdong 519082,China)
出 处:《科学技术哲学研究》2020年第4期15-20,共6页Studies in Philosophy of Science and Technology
基 金:国家社会科学基金青年项目“信念修正视域下的悖论研究”(16CZX051)。
摘 要:众所周知,数学家的工作是发现数学真理,但中后期维特根斯坦却认为:不论是数学实体还是数学真理都是数学家的发明而非发现。他还呼吁数学家应当限制这种数学发明活动,以免发明出不可判定的拟数学命题。这些观点颇受学界争议,但也颇具启发性。虽然数学概念的定义是一种发明过程,但一旦数学实体被发明出来,它们的性质和关系就随之而被确定,从而数学真理是已然在那数学实在之中等候数学家去发现的。因此,数学并不完全是发现也不纯粹是发明,而是居于发明和发现之间的学科。As we know,mathematicians’ job is to discover mathematical truth. But middle and later Wittgenstein claimed that all mathematical entities and truths are mathematicians’ inventions rather than discoveries. And he proposed that mathematicians should restrain their mathematical invention to avoid undecidable pseudo-propositions. Although these views are controversial in the literature,they are quite enlightening. Once those mathematical entities are invented through definitions,their properties and relations are also determined. So mathematical truths are already there in the mathematical realm waiting for mathematicians’ discovery. Hence,mathematics is neither complete discovery nor pure invention,but a discipline between invention and discovery.
分 类 号:N02[自然科学总论—科学技术哲学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7