工业控制网络中的良性蠕虫传播模型  被引量:2

Benign Worm Propagation Model in Industrial Control Networks

在线阅读下载全文

作  者:李妍[1] 张宏宇 LI Yan;ZHANG Hong-yu(School of Information and Telecommunication Engineering,Liaoning Equipment Manufacturing Vocational and Technical College,Shenyang 110161,China;College of Computer Science and Engineering,Northeastern University,Shenyang 110169,China)

机构地区:[1]辽宁装备制造职业技术学院信息与通信工程学院,辽宁沈阳110161 [2]东北大学计算机科学与工程学院,辽宁沈阳110169

出  处:《控制工程》2020年第7期1286-1292,共7页Control Engineering of China

摘  要:随着工业化和信息化的不断融合,工控系统的物理隔离逐渐被打破,越来越多的恶意软件已经威胁到了工控网络的安全。面对着针对工控网络的各种恶意攻击,良性蠕虫为我们提供了一种新的对抗策略。所以如何建立一个在工控网络中的良性蠕虫传播模型就是我们要解决的关键问题。根据良性蠕虫的基本特点,在工控网络中建立了3种不同的SUIR模型,并对其无病平衡点和地方病平衡点的稳定性进行了推导证明。此外,我们对这3种不同的模型做了数值实验,实验结果表明兼备打补丁和主动查杀功能的良性蠕虫防御效果最好。最后我们对模型进行了仿真模拟,仿真实验的结果与数值实验拟合程度较好,可以证明我们对模型理论分析的正确性。With the continuous integration of industrialization and informationization,the physical isolation of industrial control systems(ICS)has been gradually broken,and more and more malwares have threatened the security of industrial control systems.Facing with various cross-network attacks against industrial control systems,the benign worm provides us with a new confrontation strategy.So how to establish a benign worm propagation model in the industrial control network is the key problem to be solved.In this work,according to the basic characteristics of benign worms,three different SUIR models were established in the ICS network,and the stability of the disease-free equilibrium and the endemic equilibrium were proved.Furthermore,numerical experiments were carried out on these three different models.The results show that the benign worms with both patching and active defense have the best defense effect.Finally,in the background of ICS network,simulation experiments on the propagation model of benign worms are carried out.The results of these two experiments are well fitted,which can prove the correctness of the theoretical analysis.

关 键 词:良性蠕虫 工业控制网络 恶意软件传播动力学 仿真实验 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象