基于卷积神经网络的翻拍图片哈希检索方法  被引量:2

Hash Retrieval Method for Recaptured Images Based on Convolutional Neural Network

在线阅读下载全文

作  者:李晶 王翾[1] 刘守训[1] LI Jing;WANG Xuan;LIU Shou-xun(School of Information and Communication Engineering,Communication University of China,Beijing 100024,China)

机构地区:[1]中国传媒大学信息与通信工程学院,北京100024

出  处:《中国传媒大学学报(自然科学版)》2020年第2期65-71,共7页Journal of Communication University of China:Science and Technology

摘  要:提出一种基于卷积神经网络的翻拍图片哈希检索方法,基本思路是:在卷积神经网络中加入哈希层,提取哈希层输出的二值哈希码用于图像检索;检索匹配阶段采取由粗到精的分级检索策略,依次计算查询图像与图片库中图像之间的距离,得到最终的检索结果。在翻拍广告图片集上的实验结果表明:该方法对翻拍图片旋转、缩放、遮挡、反光等不敏感,与仅使用fc7层输出进行检索相比,平均检索精度值增加了12.1%。This paper proposes a hash retrieval method for recaptured images based on convolutional neural network.The basic idea is to add a hash layer to the convolutional neural network,and extract the binary hash code output by the hash layer for image retrieval.Then,a hierarchical search strategy from coarse-to-fine is used to calculate the distance between the query image and the image in the image dataset in order to obtain the final search result.The experimental results on the recaptured advertisement image collection show that the method in this paper is insensitive to recaptured image rotation,scaling,occlusion,reflectionetc.Compared with only the output of fc7 layer for retrieval,the mean average precision increased by 12.1%.

关 键 词:图像检索 卷积神经网络 翻拍图片检索 分级检索 

分 类 号:N37[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象