检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王凯[1] 赵学磊 李英乐[1] 刘正铭 李星[1] Wang Kai;Zhao Xuelei;Li Yingle;Liu Zhengming;Li Xing(National Digital Switching System Engineering&Technological R&D Center,Zhengzhou 450002,China)
机构地区:[1]国家数字交换系统工程技术研究中心,郑州450002
出 处:《计算机应用研究》2020年第7期1946-1951,共6页Application Research of Computers
基 金:国家自然科学基金青年科学基金资助项目(61803384)。
摘 要:为融合连边符号语义信息提升网络表示学习质量,针对现有算法处理复杂连边符号语义信息能力较弱问题,提出一种融合连边符号语义信息的网络表示学习算法,将包含正负关系的连边符号语义信息引入网络表示学习过程。首先,该算法设计基于三层感知机的关系预测模型刻画节点间不同类型的上下文链接关系;然后,引入随机游走策略实现上下文链接采样以适应大规模网络场景训练需求。在三个数据集中实验表明,该算法能够有效建模节点间不同类型的上下文链接关系,挖掘其中包含的复杂语义信息,相比目前最优的SIDE方法,所提算法的性能分别提高了0.31%、1.3%和1.85%。In order to enhance the network representation learning quality with the edge signed semantic information,focusing on the weakness of existing fusion methods in dealing with complex edge signed semantic information,this paper proposed a network representation learning algorithm incorporating with edge signed semantic information,and introduced the edge signed semantic information containing positive and negative relations into the network representation learning process.Firstly,this paper designed a relationship prediction model based on the three-layer perceptron to depict different types of context link relations between nodes.Then it introduced the random walk strategy to implement context link sampling to adapt the large-scale network scenarios.Experiments on three data sets show that this algorithm can effectively model different types of context links between nodes and mine the complex semantic information contained in them.Compared with the current optimal SIDE method,the performance of the proposed algorithm is improved by 0.31%,1.3%and 1.85%.
关 键 词:网络表示学习 信息融合 连边符号语义信息 上下文链接
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.44.178