检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:施非 邱臻 韩勤 李金耿 钱惠敏[1] 项文波[3] SHI Fei;QIU Zhen;HAN Qin;LI Jin-geng;QIAN Hui-min;XIANG Wen-bo(College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China;Zhejiang Huayun Information Technology Co. Ltd., Hangzhou 310008, China;College of Automation, Nanjing University of Science & Technology, Nanjing 210098, China)
机构地区:[1]河海大学能源与电气学院,江苏南京211100 [2]浙江华云信息科技有限公司,浙江杭州310008 [3]南京理工大学自动化学院,江苏南京210098
出 处:《计算机与现代化》2020年第8期56-62,共7页Computer and Modernization
基 金:江苏省自然科学基金资助项目(20145051211);河海大学中央高校基本科研业务费专项资金资助项目(261220182018B15514)。
摘 要:基于深度卷积神经网络的目标检测算法已成为目标检测领域中的研究热点,它包括基于区域提议的两阶段目标检测算法和基于位置回归的一阶段目标检测算法。Faster R-CNN是两阶段目标检测的典型算法之一,但是,训练数据集中简单样本-难分样本数量不平衡,以及样本数据的类间不平衡,都是影响Faster R-CNN检测精度的重要原因。本文提出一种基于可变权重损失函数Focal Loss和难例挖掘模块的改进Faster R-CNN算法。具体地,在网络的分类部分引入Focal Loss函数,通过权重调节样本数据的类间不平衡,改善简单样本-难分样本的数量不平衡;同时,修改网络结构,引入难例挖掘模块,进一步平衡简单样本-难分样本的数量,提高网络的检测性能。本文采用不同数据集,不同基础网络来测试提出的算法性能。实验结果表明,在VGG-16基础网络下,本文算法在Pascal VOC 2007数据集上平均检测精度较原算法提高了0.9个百分点,在Pascal VOC 07+12数据集上提高了1.7个百分点;在Res-101基础网络上,在Pascal VOC 2007数据集上平均检测精度较原算法提高了1.3个百分点,在Pascal VOC 07+12数据集上提高了1.5个百分点。Object detection algorithm based on deep convolutional neural network has become a research hotspot in the field of object detection,which includes two-stage object detection algorithm based on region proposal and one-stage object detection algorithm based on position regression.Faster R-CNN is one of the typical algorithms for two-stage object detection.However,the imbalance between simple examples and hard examples in the training data set and the inter-class imbalance of sample data are important reasons that affect the detection accuracy of Faster R-CNN.In this paper,an improved algorithm of Faster R-CNN based on variable weight loss function and OHEM is proposed.Specifically,the Focal Loss function is introduced into the classification part of the network to adjust the inter-class imbalance of sample data and improve the imbalance of the number of simple examples and the number of hard examples by adjusting the weight.At the same time,the network structure is modified,and online hard example mining is introduced to further balance the number of simple samples and the number of hard samples so as to improve the detection performance of the network.To verify the performance of the proposed algorithm,experiments on different data sets and different basic networks are conducted.The experimental results show that on the basic network VGG-16,the proposed algorithm improves the mAP by 0.9 percentage points on the Pascal VOC 2007 data set compared with the original algorithm and 1.7 percentage points on Pascal VOC 07+12 data set.On the basic network RES-101,the mAP of the proposed algorithm on Pascal VOC 2007 data set is 1.3 percentage points higher than that of the original algorithm,and the mAP of the proposed algorithm on Pascal VOC 07+12 data set is 1.5 percentage points higher.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222