检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:玉雄侯 杨蓉[1] 杨晓虎 黄俊明[1] YU Xionghou;YANG Rong;YANG Xiaohu;HUANG Junming(School of Mechanical Engineering, Guangxi University, Nanning 530004, China)
出 处:《上海工程技术大学学报》2020年第2期119-126,共8页Journal of Shanghai University of Engineering Science
基 金:国家自然科学基金资助项目(61703116);广西科技基地和人才专项资助项目(AD19110019);广西创新驱动发展专项资助项目(AA18242045-3);广西自然科学基金资助项目(2017GXNSFBA198228);广西教育厅科研资助项目(2018KY0024);南宁市科技局重点研发计划资助项目(20192065)。
摘 要:为提高汽车行驶安全性,结合DM642芯片设计一套基于图像处理的车载浓雾天气识别系统.首先通过特征组合法确定晴朗天和浓雾天图像的最佳识别特征是暗通道均值和灰度均值,然后利用支持向量机(SVM)对分类模型进行训练,最后将识别算法以及分类模型移植到DM642中进行硬件测试.试验结果表明,该算法在硬件上能有效地区分晴朗天与浓雾天图像,识别准确率达到95%.In order to improve the safety of vehicle driving,a vehicle dense fog weather recognition system based on image processing was designed with DM642 chip.Firstly,the best features of sunny and foggy images were determined by feature combination method,which were dark channel mean and gray scale mean.Then,support vector machine(SVM)was used to train the classification model.Finally,the recognition algorithm and classification model were transplanted into DM642 for hardware test.The experimental results show that the algorithm can effectively distinguish between sunny and foggy images in hardware,and the recognition accuracy is up to 95%.
关 键 词:浓雾天气识别 DM642芯片 暗通道均值 灰度均值 支持向量机
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7