检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶明全 苏洋[1,2] 童九翠 Ye Mingquan;Su Yang;Tong Jiucui(School of Medical Information,Wannan Medical College,Wuhu 241000;Research Center of Health Big Data Mining and Applications,Wannan Medical College,Wuhu 241000;Yijishan Hospital,Wannan Medical College,Wuhu 241000)
机构地区:[1]皖南医学院医学信息学院,安徽芜湖241000 [2]皖南医学院健康大数据挖掘与应用研究中心,安徽芜湖241000 [3]皖南医学院弋矶山医院,安徽芜湖241000
出 处:《池州学院学报》2020年第3期23-26,共4页Journal of Chizhou University
基 金:国家自然科学基金项目(61672386);教育部人文社会科学研究规划基金项目(16YJAZH071);安徽省自然科学基金项目(1708085MF142)。
摘 要:针对单层关联规则在精神障碍患者药品不良反应(Adverse Drug Reaction,ADR)风险检测与预警中存在的不足,提出一种基于多层关联规则和概念层次树的ADR风险检测与预警系统框架。该系统结合精神障碍患者ADR报告实际数据,通过领域知识构建概念层次树,并采用多层关联规则挖掘方法找出ADR临床症状与不同相关因素(用药人群、用药情况等)组合之间较高概念层次的强关联规则。结果表明,与单层关联规则相比,多层关联规则能够为ADR风险检测与预警提供更好的临床用药辅助决策。Aiming at the shortcomings of single-level association rules in the risk detection and early warning of adverse drug reactions(ADR)in patients with mental disorders,the framework of ADR risk detection and warning system for patients with mental disorders based on concept hierarchy tree and multiple-level association rule mining was proposed.The system combines the actual data of ADR reports from patients with mental disorders,constructs a conceptual hierarchy tree through domain knowledge,and uses a multiple-level association rule mining method to discover strong association rules at higher conceptual levels between the medication population,the medication situation and the clinical symptoms of ADR.The results show that compared with single-level association rules,multi-level association rules can provide better clinical medication aided decision-making for ADR risk detection and early warning.
关 键 词:药品不良反应 ADR预警 数据挖掘 多层关联规则 概念层次树
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.48.13