基于改进VMD算法的岩体失稳声发射信号去噪方法  被引量:1

Denoising Method for Rock Mass Instability Acoustic Emission Signals Based on Improved VMDAlgorithm

在线阅读下载全文

作  者:罗小燕[1] 黄祥海 邵凡 陈晟 LUO Xiaoyan;HUANG Xianghai;SHAO Fan;CHEN Sheng(School of Mechanical and Electrical Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China)

机构地区:[1]江西理工大学机电工程学院,江西赣州341000

出  处:《噪声与振动控制》2020年第4期9-16,共8页Noise and Vibration Control

基  金:国家自然科学基金资助项目(51464017);江西省教育厅科技重点资助项目(GJJ150618)。

摘  要:针对岩体失稳声发射信号具有非线性、非平稳的特点和在采用传统变分模式分解VMD算法对岩体失稳声发射信号去噪时分解参数K难以确定的问题,提出一种基于改进VMD算法的信号去噪方法。以红砂岩为研究对象,首先采用VMD算法将原始失稳声发射信号分解得到多个IMF分量,引入相关系数构建有效分量的选取方法,计算不同K值下各IMF分量与原始信号的相关性,然后根据有效IMF分量选取原则选取有效IMF分量进行信号重构并剔除虚假IMF分量,最后以均方根误差与相对误差为去噪效果评价指标,得到不同K值下的去噪结果。经仿真和实验分析可知,改进的VMD算法去噪效果显著。In view of the problem that the acoustic emission signal of unstable rock mass is nonlinear and nonstationary and the traditional(Variational mode decomposition,VMD) algorithm is hardly to determine the decomposition parameter K when denoising the rock-borne unstable acoustic emission signal,an improved signal denoising method based on VMD algorithm is proposed.The red sandstone is taken as the research object.Firstly,the original unstable acoustic emission signal of the red sandstone is decomposed into several IMF components by VMD algorithm.The correlation coefficient is introduced to construct the effective component selection method.And the correlation between the IMF components and the original signal under different K values is calculated.Then,according to the effective IMF component selection principle,the effective IMF component is selected for signal reconstruction and the false IMF component elimination.Finally,the root mean square error and the relative error are used as the denoising effect evaluation index to obtain the denoising results for different K values.The simulation and experimental analysis show that the improved VMD algorithm has significant denoising effects.

关 键 词:振动与波 岩体失稳声发射信号 VMD 不确定性 相关系数 去噪 

分 类 号:TU45[建筑科学—岩土工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象