检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王艳 周金秋 WANG Yan;ZHOU Jinqiu(School of Mathematics and Statistics,Minnan Normal University,Zhangzhou,Fujian,363000,P.R.China;Faculty of Science,Jiangxi University of Science and Technology,Ganzhou,Jiangxi,341000,P.R.China)
机构地区:[1]闽南师范大学数学与统计学院,福建漳州363000 [2]江西理工大学理学院,江西赣州341000
出 处:《数学进展》2020年第4期413-417,共5页Advances in Mathematics(China)
基 金:NSFC(No.11671186);NSF of Fujian(No.2017J01404);Institute of Meteorological Big Data-Digital Fujian and Fujian Key Laboratory of Data Science and Statistics。
摘 要:若一个连通图的每条边都包含在某一完美匹配中,则称之为匹配覆盖图.设G是一个3-连通图,若去掉G的任意两个顶点后得到的子图仍有完美匹配,则称G是一个brick.而brick的重要性在于它是匹配覆盖图的组成结构因子.3-边可染3-正则5的刻画问题是一个NP-完全问题.本文将此问题规约到3-正则匹配覆盖图上,进而规约到其组成结构因子brick上.我们证明了:一个3-正则图是3-边可染的当且仅当它的所有brick是3-边可染的.A graph is called matching covered if it is connected and every edge belongs to a perfect matching.A 3-connected graph G is called a brick if the graph obtained from it by deleting any two vertices has a perfect matching.The importance of bricks stems from the fact that they are building blocks of matching covered graphs.In this paper,we reduce the NP-complete problem of characterizing the 3-edge-colorable cubic graphs to matching covered cubic graphs,then to its bricks.Namely,a cublc graph is 3-edge-colorable if and only if all its bricks are 3-edge-colorable.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62