检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈红松[1] 陈京九 CHEN Hongsong;CHEN Jingjiu(School of Computer and Communication Engineering,University of Science and Technology Beijing,Beijing 100083,China)
机构地区:[1]北京科技大学计算机与通信工程学院,北京100083
出 处:《湖南大学学报(自然科学版)》2020年第8期1-8,共8页Journal of Hunan University:Natural Sciences
基 金:国家社会科学基金资助项目(18BGJ071)。
摘 要:为提高物联网入侵检测模型的综合性能,将残差神经网络(Residual Networks,ResNet)与双向长短时记忆(Long-Short Term Memory,LSTM)网络融合,构建物联网入侵检测分类模型.针对大规模物联网流量快速批量处理问题,在对原始数据进行清洗、转换等预处理基础上,提出将多条流量样本转换为灰度图,并利用基于ResNet和双向LSTM融合的深度学习方法构建物联网入侵检测分类模型.对分类模型的网络结构、可复用性进行综合优化实验,得到最终优化模型,分类准确率达到96.77%,综合优化后的模型构建时间为39.85 s.与其他机器学习算法结果相比,该优化方法在分类准确率和效率两个方面取得了很好的效果,综合性能优于传统的入侵检测分类模型.In order to improve the performance of the Internet of Things(IOT)network intrusion detection model,Residual Networks(ResNet)and bidirectional Long-Short Term Memory(LSTM)networks were combined,and an IOT intrusion detection classification model was constructed.For the rapid and batch processing problem of large-scale IOT traffic,multiple traffic samples were converted into grayscale images.Then,the grayscale images were used to construct IOT intrusion detection and classification model which combined with ResNet and bidirectional LSTM network.The network structure and re-usability of the classification model were optimized experimentally,so the optimization model was obtained finally.The classification accuracy of the optimization model is 96.77%,and the running time after the model reuse optimization is 39.85 s.Compared with other machine learning algorithms,the proposed approach achieves good results in both classification accuracy and efficiency.The performance of the proposed model is better than that of traditional intrusion detection model.
关 键 词:入侵检测 残差网络 双向LSTM网络 图像分类 物联网
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.188.218