检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄友文[1] 赵朋 游亚东 Huang You wen;Zhao Peng;You Yadong(School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China)
机构地区:[1]江西理工大学信息工程学院,江西赣州341000
出 处:《激光与光电子学进展》2020年第14期103-113,共11页Laser & Optoelectronics Progress
基 金:江西省教育厅科技项目(GJJ180443);江西理工大学校级重点课题(NSFJ2014-K18)。
摘 要:针对目前人物图像生成模型普遍存在糊化和纹理缺失等问题,提出一种融合特征反馈机制的姿态引导人物图像生成模型,该模型采用生成式对抗神经网络进行训练,在姿势集成和图像细化阶段生成模型的基础上提出一种特征信息反馈机制,使得生成模型的每个阶段都会受到特征比对调节。受到迁移学习的启发,将在ImageNet数据集上预训练的权重作为模型特征层的初始权重,并在训练过程中进行相应微调,旨在增强图像生成模型的稳健性和鲁棒性,提高生成图像的质量。实验结果表明,所提模型能够获取较为真实细腻,符合人类视觉感知的人物图像。To address the limitations of character image generation models,such as ambiguity and lack of texture,this study proposes a pose-guided character image generation model incorporating a fusion feature feedback mechanism.Generative adversarial neural networks are used for training the proposed model.Further,the proposed model is generated during the postural integration and image refinement stages.A fusion feature information feedback mechanism is proposed based on the model to ensure that each stage of the generated model will be subjected to feature comparison adjustment.Inspired by transfer learning,the pre-trained weights of the ImageNet dataset are used as the initial weights of the model feature layer.Moreover,to enhance the robustness of the image generation model and improve the quality of the generated images,corresponding fine-tuning is performed during the training process.Experimental results reveal that the proposed model can obtain more realistic and delicate images of humans that are consistent with human visual perception.
关 键 词:图像处理 图像生成 迁移学习 姿态估计 对抗神经网络
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222