检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐万 谢长君[1] 邓坚[1] 黄亮[1,2] XU Wan;XIE Chang-jun;DENG Jian;HUANG Liang(School of Automation,Wuhan University of Technology,Wuhan,Hubei 430070,China;Wuhan Complex Dimension Data Technology Co.,Ltd.,Wuhan,Hubei 430070,China)
机构地区:[1]武汉理工大学自动化学院,湖北武汉430070 [2]复变时空(武汉)数据科技有限公司,湖北武汉430070]
出 处:《电池》2020年第4期333-337,共5页Battery Bimonthly
基 金:国家自然科学基金(51977164)。
摘 要:扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)算法估算电池荷电状态(SOC)依赖等效模型参数的准确性,估算精度低。容积卡尔曼滤波(CKF)算法的滤波性能良好。利用自适应CKF(ACKF)算法估算电池SOC,自适应调节过程噪声协方差和量测噪声协方差,提高估算SOC的精度。对锂离子电池建立二阶RC等效电路模型,在不同工况下进行充放电,用卡尔曼滤波算法在线辨识等效模型的参数,ACKF算法实时估算SOC。ACKF算法估算SOC的鲁棒性较强,精度在1.5%以内。The estimation accuracy of extended Kalman filter(EKF)and unscented Kalman filter(UKF)estimating battery state of charge(SOC)was related to the accuracy of equivalent model parameters,the estimation accuracy was low.Cubature Kalman filter(CKF)algorithm had good filtering performance.Adaptive CKF(ACKF)algorithm was used to estimate the battery SOC,adaptively adjust the process noise covariance and measure the noise covariance to improve the accuracy of estimation.The second order RC equivalent circuit model for Li-ion battery was established.When charged-discharged under different working conditions,the parameters of equivalent model were identified online by Kalman filter algorithm,SOC was real time estimated by ACKF algorithm.ACKF algorithm had strong robustness when used to estimate SOC,the estimation accuracy was less than 1.5%.
关 键 词:锂离子电池 荷电状态(SOC) 卡尔曼滤波 自适应容积卡尔曼滤波(ACKF)
分 类 号:TM912.9[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.169