检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张志远 倪国新[1] 徐艳国[1] Zhang Zhiyuan;Ni Guoxin;Xu Yanguo(Nanjing Research Institute of Electronics Technology,Nanjing 210000,China)
出 处:《电子测量技术》2020年第13期111-116,共6页Electronic Measurement Technology
摘 要:位置获取技术的进步产生了大量的轨迹数据,这些数据蕴含了丰富的信息。在过去一段时间里,人们提出了很多处理、挖掘轨迹数据的技术,推动其快速发展,应用更加广泛。为帮助人们更迅速了解轨迹数据挖掘这一领域。对轨迹数据挖掘的主要研究进行了系统的综述,首先介绍了轨迹数据的相关概念及其预处理方法,然后阐述了几种模式挖掘的方法,比如序列模式、伴随模式挖掘等。其次,介绍了现有的轨迹预测模型并且讨论分析了各个方法的优缺点,最后说明了轨迹预测的潜在挑战和未来的发展方向。The progress of location acquisition technology has produced a large amount of trajectory data, which contains a wealth of information. In the past, many techniques for processing and mining track data have been proposed, which have promoted its rapid development and wider application. The purpose of this paper is to help people understand the field of trajectory data mining more quickly. In this paper, the main research on trajectory data mining is systematically summarized. Firstly, the relevant concepts and preprocessing methods of trajectory data are introduced, and then several methods of pattern mining are described, such as sequential pattern mining and moving together pattern mining. Secondly, the existing trajectory prediction models are introduced and the advantages and disadvantages of each method are discussed and analyzed. Finally, the potential challenges and future development direction of trajectory prediction are illustrated.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.19