拉普拉斯边缘检测算法的改进及其在探地雷达中的应用  被引量:9

Improvement of Laplacian Edge Detection Algorithm and Its Application on GPR

在线阅读下载全文

作  者:彭土有[1] 吴洁 彭俊 PENG Tuyou;WU Jie;PENG Jun(Electronic and Information Technology Department,Jiangmen Polytechnic,Jiangmen 529000,China;Infineon Technologies,Shenzhen 518000,China;TSMC China Company Ltd.,Shenzhen 518000,China)

机构地区:[1]江门职业技术学院电子与信息技术系,广东江门529000 [2]英飞凌科技(中国)有限公司,广东深圳518000 [3]台积电(中国)有限公司,广东深圳518000

出  处:《现代雷达》2020年第8期41-45,共5页Modern Radar

基  金:广东省与教育部产学研结合资助项目(2011B090400120)。

摘  要:边缘检测是提取图像特征的重要手段,已在许多领域得到广泛应用。传统拉普拉斯边缘检测算子不具有Sobel和Prewitt等边缘检测算子的图像平滑功能,对噪声的响应敏感,会误将噪声作为边缘。文中通过求解二阶梯度的拉普拉斯变换,得到了拉普拉斯边缘检测算子,探讨了将传统拉普拉斯边缘检测与二维高斯函数结合,通过一维卷积完成改进拉普拉斯边缘检测的优化算法;同时,在已建立的QT-CUDA并行平台上开发完成了改进拉普拉斯边缘检测模块,并集成到探地雷达精细解释软件系统。对实测探地雷达数据进行处理的结果表明:该算法不仅运行效率高,而且在突出有效异常、提高探地雷达目标体的识别能力方面取得实效。Edge detection is an important mean to extract image features,and it has been widely used in many fields.Unlike Sobel and Prewitt operator,the traditional Laplacian edge detection operator does not have the function of smoothing image,and it is sensitive to the noise.Thus the noise may be mistakenly considered as edge.By solving the Laplacian transform of second spatial gradient,an improved Laplacian edge detection operator is obtained.The traditional Laplacian edge detection is combined with two-dimension Gaussian function,and the improved Laplacian edge detection optimization algorithm is carried out by the one-dimension convolution.At the same time,the improved Laplace edge detection module is developed based on the QT-CUDA parallel platform,and integrated into the ground penetrating radar(GPR)fine interpretation software system.The experimental results by processing the GPR field data show that the algorithm is not only efficient,but also effective in highlighting effective anomalies,thus improving the recognition ability of GPR targets.

关 键 词:探地雷达 高斯滤波 边缘检测 改进拉普拉斯算法 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象