检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖智勤 王李管[1,2] 何正祥 LIAO Zhiqin;WANG Liguan;HE Zhengxiang(School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China;Digital Mine Research Center,Central South University,Changsha 410083,Hunan,China)
机构地区:[1]中南大学资源与安全工程学院,湖南长沙410083 [2]中南大学数字矿山研究中心,湖南长沙410083
出 处:《黄金科学技术》2020年第4期585-594,共10页Gold Science and Technology
基 金:国家重点研发计划项目“深部金属矿集约化连续采矿理论与技术”(编号:2017YFC0602905)资助。
摘 要:针对岩体工程中岩体破裂信号与爆破振动信号难以自动区分的问题,提出了一种基于集合经验模态分解(EEMD)关联维数与机器学习相结合的微震信号特征提取和分类方法。利用EEMD将微震信号分解为本征模态函数(IMF)分量,并从得到的IMF分量中筛选出主分量IMF1~IMF4,再通过相空间重构计算出各个主分量的关联维数,最后将所得到的关联维数作为特征向量,使用SVM方法进行微震信号自动识别,并与其他机器学习方法进行对比分析。试验结果表明:该方法对微震信号的自动识别具有较高的准确率,且基于高斯核函数的SVM的识别效果明显优于逻辑回归(LR)和K-近邻算法(KNN)判别法的识别结果,其准确率达到93.7%。The microseismic monitoring technique is to evaluate the failure and safety of rock mass indirectly by monitoring the vibration signal caused by the rupture inside the rock mass,and it can provide guidance for ground pressure disaster warning and safety production optimization.In order to accurately analyze the behavior of rock rupture,it is necessary to eliminate the interference of non-microscopic signal.At present,microseismic monitoring system can not recognize microseismic signal automatically.The core problem is that the vibration signal is complex,the waveform characteristic is not obvious,the noise is large and multi-seismic superposition occurs.In order to solve the problem that it is difficult to distinguish the rock burst signals and the blasting vibration signals automatically,a method of feature extraction and classification of microseismic signals based on ensemble empirical mode decomposition(EEMD),correlation dimension and machine learning was proposed.Firstly,the microseismic signals was decomposed into Intrinsic Mode Function(IMF)components by EEMD,and the principal components IMF1~IMF4 were selected from the obtained IMF components,the IMF1~IMF4 component was selected as the main component for phase space reconstruction.The delay time and minimum embedding dimension of each component were obtained by autocorrelation function method and Cao algorithm.Then,accoring to the obtained delay time and embedding dimension,the correlation integral curve of IMF1~IMF4 components was obtained by using the G-P algorithm,and the region with the best linearity of the correlation integral curve was found.The integral curve was fitted by least squares,and the resulting linear slope value was taken as the correlation dimension value,and the obtained correlation dimension was taken as the feature vector for microseismic signal recognition..Finally,the SVM method was used to automatically identify the microseismic signals and compare them with other machine learning methods.The experimental results show that the me
关 键 词:微震信号 集合经验模态分解(EEMD) 相空间重构 关联维数 机器学习
分 类 号:TD76[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7