检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张树翠 齐朝晖[2] 徐金帅 张欣刚 ZHANG Shu-cui;QI Zhao -hui;XU Jin-shuai;ZHANG Xin-gang(School of Mechanical Engineering,Anyang Institute of Technology,Anyang 455000,China;State Key Laboratory of Structure Analysis for Industrial Equipment,Department of Engineering Mechanics,Dalian University of Technology,Dalian 116024,China)
机构地区:[1]安阳工学院机械工程学院,安阳455000 [2]大连理工大学工程力学系,工业装备结构分析国家重点实验室,大连116024
出 处:《计算力学学报》2020年第4期448-454,共7页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金(11872137,91748203)资助项目。
摘 要:吊装施工过程中被吊模块的水平度是作业要求的重要指标,通常需要增加配重调平。传统有限元方法需要补充约束以消除单元刚体位移,且需要重复计算平衡方程来求解调平载荷,效率不高。将模块的运动分解为随动坐标系的整体运动以及相对该坐标系的弹性变形,可将欠约束问题化为多体系统的静平衡问题。基于虚功率原理推导了吊装平顺时刻的节点力平衡方程以及相应的切线刚度矩阵,并将配重表示为基础配重与载荷系数相乘的形式。通过对节点力平衡方程求导,得到一组以载荷系数为自变量的微分方程,通过求解微分方程并结合水平度判据,可快速搜寻满足水平度要求的载荷系数。数值算例表明,该方法在解决偏心模块吊装欠约束问题方面具有明显的优势,在确定配重载荷方面具有较快的速度和合理的精度。Levelness of the module is the key index during the lifting operation.Under most conditions,a counterweight is needed to meet the levelness requirement.If we use the classical FEM for lifting analysis,additional constraints are always needed to eliminate the rigid body displacement,moreover,if we want to determine the counterweight,we may need repetitive enforcement of the equations of equilibrium,and thus the computational efficiency would be unsatisfactory.To overcome these problems,the motion of the lifting module can be decomposed into the rigid-body motion of the body and the elastic motion relative to the rigid body motion.Hence,the under-constrained problem can be converted to a static equilibrium problems of a multibody systems.In the following,the equations of equilibrium for model forces and the tangent stiffness matrix are obtained based on the virtual power principle.Then,the counterweight is expressed as a function of the basic counterweight and the load factor.The equations of equilibrium can then be converted to a set of ordinary differential equations(ODEs).Using an efficient algorithm for the ODEs,the counterweight can be easily and quickly obtained.Numerical examples shows that the proposed method can be a new approach for under-constrained problems and possess a reasonable accuracy and relatively rapid speed to obtain the counterweight.
分 类 号:O313.7[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63