检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡婧 周洋 何志强[1] 刘兵 卢凯 HU Jing;ZHOU Yang;HE Zhiqiang;LIU Bing;LU Kai(Hohhot Power Supply Bureau,Hohhot 010020,China)
机构地区:[1]呼和浩特供电局,内蒙古自治区呼和浩特010020
出 处:《供用电》2020年第9期17-22,28,共7页Distribution & Utilization
基 金:内蒙古电力公司2020年第一批科技计划项目(2020-20)。
摘 要:电力扰动数据中包含着大量与设备异常运行状态有关的信息,某些设备的扰动特征很微弱,但却会对设备的运行产生一定的影响,对这些扰动数据的检测将有利于准确感知设备运行状态,防止设备发生故障。提出了一种基于深度置信网络的电力扰动数据检测方法,利用深度置信网络强大的特征提取能力,自动学习出蕴含在扰动数据中的隐藏特征,摆脱人为提取特征的依赖。最后将学习到的特征作为随机森林的输入,实现对电力扰动数据的检测。利用某变电站记录到的实测数据和PSCAD/EMTDC中的仿真数据进行了验证,结果表明所提方法能够准确检测出电力扰动数据,证实了利用深度置信网络检测电力扰动数据的可行性。Power disturbance data contain a lot of information related to the abnormal operation status of equipment.The disturbance characteristics of some equipment are very weak,but it will have a certain impact on the operation of the equipment.The detection of these disturbance data will help to accurately perceive the operation status of the equipment and prevent equipment failure.This paper proposes a detection method of power quality disturbance data using the deep belief network.By using the powerful feature extraction ability of the deep confidence network,the hidden features contained in different power disturbance data can be learned automatically,which can get rid of the dependence of the artificial feature extraction.Finally,the features learned are used as input of random forest to detect the power disturbance data.The test data recorded in a substation and the simulation data in PSCAD/EMTDC are used to verify.The results show that the proposed method can accurately detect the power disturbance data,and the feasibility of detecting the weak power disturbance data by using the deep belief network is verified.
关 键 词:电力扰动 扰动检测 特征提取 数据分析 深度置信网络
分 类 号:TM71[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49