检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张斌[1] 李晓娜[1] 杨苗苗 ZHANG Bin;LI Xiao-na;YANG Miao-miao(Department of Basic Education,Henan Technical College of Construction,Zhengzhou 450064,China;General Education Center,Zhengzhou Business University,Zhengzhou 451200,China)
机构地区:[1]河南建筑职业技术学院基础教学部,河南郑州450064 [2]郑州商学院通识教育中心,河南郑州451200
出 处:《塑料科技》2020年第8期84-87,共4页Plastics Science and Technology
摘 要:聚氯乙烯(PVC)制备过程中,汽提塔温度控制精度决定了PVC产品的质量。利用加权最小二乘支持向量机(WLSSVM)建立了自适应WLSSVM的PVC汽提工业温度模型,对离群点分配较小的权值以提高模型精度。采用传统WLSSVM模型和自适应WLSSVM模型对汽提塔温度进行对比仿真实验。仿真实验结果表明,自适应WLSSVM模型相比于传统WLSSVM模型能够更好地预测PVC汽提工业中温度的变化。In the production process of polyvinyl chloride(PVC),the temperature control accuracy of the stripper determines the quality of the PVC product.A weighted least squares support vector machine(WLSSVM)was used to establish an adaptive WLSSVM PVC stripping industrial temperature model,and outliers were assigned smaller weights to improve the accuracy of the model.The traditional WLSSVM model and the adaptive WLSSVM model were used to compare and simulate the temperature of the stripper.The simulation experiment results showed that the adaptive WLSSVM model could better predict temperature changes in the PVC stripping industry than the traditional WLSSVM model.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15