检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁倩影 全海燕[1] YUAN Qianying;QUAN Haiyan(College of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650504,China)
机构地区:[1]昆明理工大学信息工程与自动化学院,昆明650504
出 处:《吉林大学学报(理学版)》2020年第5期1195-1201,共7页Journal of Jilin University:Science Edition
基 金:国家自然科学基金(批准号:41364002).
摘 要:为提高人工智能辅助诊断心音识别的准确率,根据心音信号的周期性特点,提出以快速主成分分析算法对心音信号降维和提取特征,同时基于单形进化算法,优化BP神经网络学习算法的输出与期望的误差函数,以改进BP神经网络的学习性能,实现对心音信号高准确度的分类识别.针对正常心音及8类异常心音信号进行性能分析与测试,实验结果表明,各类心音的平均识别率为95.96%,改进算法比其他对比算法识别率分别提高了4.9%,3.9%,1.9%,表明该算法能更有效地分类识别心音信号,提高人工辅助诊断的识别率.In order to improve the accuracy of heart sound recognition of artificial intelligence assisted diagnosis,according to the periodicity of heart sound signal,we proposed a fast principal component analysis algorithm to reduce the dimension of heart sound signal and extract features.At the same time,based on the simplex evolution algorithm,the output of BP neural network learning algorithm and the expected error function were optimized to improve the learning performance of BP neural network and realize the classification and recognition of heart sound signal with higher accuracy.Aiming at the normal heart sound and eight kinds of abnormal heart sound signals,the performance was analyzed and tested.The experimental results show that the average recognition rate of all kinds of heart sounds is 95.96%.Compared with other algorithms,the improved algorithm improves the recognition rate by 4.9%,3.9% and 1.9% respectively.It shows that the proposed algorithm can effectively classify and recognize heart sound signals and improve the recognition rate of artificial assisted diagnosis.
关 键 词:单形进化算法 快速主成分分析 BP神经网络 心音识别
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.237.16