人工智能分析课堂行为特征助力教学改革  被引量:8

Analysis of classroom behavior characteristics by artificial intelligence to promote teaching reform

在线阅读下载全文

作  者:邵一川[1] 李常迪 赵骞[2] 曹勇[3] 田力威[1] SHAO Yichuan;LI Changdi;ZHAO Qian;CAO Yong;TIAN Liwei(Shenyang University,Shenyang 110024,China;Shenyang University of Technology,Shenyang 110024,China;China Medical University,Shenyang 110122,China)

机构地区:[1]沈阳大学,沈阳110024 [2]沈阳工业大学,沈阳110021 [3]中国医科大学,沈阳110122

出  处:《黑龙江畜牧兽医》2020年第17期153-158,172-174,共9页Heilongjiang Animal Science And veterinary Medicine

基  金:国家基金中国博士后面上基金项目(2016M601332);辽宁省教育厅创新人才支持计划项目(LR2019043);辽宁省科学技术基金项目(2019-ZD-0557)。

摘  要:为了量化课堂行为、优化教学方式、提升教学质量,使教学改革有章可循,笔者利用人工智能中深度学习技术建模捕捉学生的课堂行为,以专注度将课堂行为量化,并以量化结果作为评价教学方式的指标,然后通过教师群体的学生课堂专注度曲线提取最优特征曲线辅助教师进行教学迭代,促进以学生反馈为中心的教学方式的改进,最后通过教师群体借助最优特征曲线改进教学方式的实例进行验证,结果表明所有教师的教学方式都有了不同程度的改进,学生课堂专注度得到整体提升。To quantify classroom behavior, optimize the teaching method, improve the quality of teaching and make systematic teaching reform, students’ classroom behavior was captured by a kind of artificial intelligence modeling method based on deep learning in this paper, then classroom behavior was quantified in the form of concentration data, and its quantified result was used as the evaluation index of teaching approach. Then, the optimal characteristic curve was formed by the students’class concentration curve of teachers’ group to help teachers in teaching iteration and promote the improvement of the teaching approach centered on students’ feedback. Finally, an example was given to verify the improvement of teaching approach by teachers with the help of the optimal characteristic curve. The results indicated that the teaching approaches of the teachers have been improved to different degrees and the students’ class concentration has been improved as a whole.

关 键 词:人工智能 深度学习 行为捕捉 课堂行为量化 最优特征曲线 教学迭代 

分 类 号:G642[文化科学—高等教育学] TP18[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象