检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:连喜红 祁元 王宏伟 张金龙 杨瑞 Lian Xihong;Qi Yuan;Wang Hongwei;Zhang Jinlong;Yang Rui(Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China;University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院西北生态环境资源研究院,甘肃兰州730000 [2]中国科学院大学,北京100049
出 处:《遥感技术与应用》2020年第4期775-785,共11页Remote Sensing Technology and Application
基 金:中国科学院A类战略性先导科技专项资助(XDA20100101)。
摘 要:居民地的空间格局和密度直接反映着区域人类活动的强弱程度,影响着区域人地系统演变和生态环境可持续发展。基于高分辨率卫星遥感影像数据,提出了一种面向对象的青海湖环湖区居民地信息自动化提取方法。首先,利用尺度集理论对高分辨率卫星遥感影像进行多尺度分割,获取不同尺度的分割对象;其次,通过机器学习算法集对分割对象的自定义特征、光谱特征、几何特征和纹理特征进行训练,选取最优自动分类算法;最后,利用最优自动分类算法提取青海湖环湖区城镇居民地和农村居民地信息。采用平均召回率、平均准确率和平均F值评价指标对分类结果进行精度评价,其中,城镇居民地各评价指标均在93%以上,农村居民地各评价指标均在86%以上。结果表明:该方法提取城镇居民地和农村居民地总体精度较高,在大面积人类活动精细化监测中具有较好的科学意义和应用价值。The spatial pattern and density of residential areas directly reflect the intensity of regional human activities,and affect the evolution of a regional human-land system and the sustainable development of ecological environment.In this study,we proposed an objected-oriented automatic extraction method,which based on the high spatial resolution satellite remote sensing image data in the surrounding area of Qinghai lake watershed.Firstly,multi-scale segmentation of high-resolution satellite remote sensing image was carried out by using the scale sets theory to obtain segmentation objects in different scales.Secondly,the custom,spectral,geometric and texture features of the sample attributes were trained through the sets of machine learning algorithms,and the optimal automatic classification algorithm was selected.Finally,the optimal automatic classification algorithm was used to extract the information of urban and rural residential areas in the surrounding area of Qinghai lake watershed.The average recall rate,accuracy rate and F value were used to evaluate the classification results.Accuracy evaluation indexes of urban residential areas were more than 93%,and those of rural residential areas were more than 86%.The results show that this method has higher overall precision when extracting urban residential areas and rural residential areas,and has better scientific significance and application value in fine monitoring of human activities in large areas.
关 键 词:高分辨率遥感影像 面向对象 居民地 尺度集模型 机器学习算法集
分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249