基于GD-Kmeans和菲涅尔理论的WiFi手势识别方法  被引量:7

WiFi Gesture Recognition Method Based on GD-Kmeans and Fresnel Theory

在线阅读下载全文

作  者:张峻豪 吴飞 朱海 ZHANG Junhao;WU Fei;ZHU Hai(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;Shanghai Huace Navigation Technology Ltd.,Shanghai 201702,China)

机构地区:[1]上海工程技术大学电子电气工程学院,上海201620 [2]上海华测导航技术股份有限公司,上海201702

出  处:《计算机工程与应用》2020年第19期126-131,共6页Computer Engineering and Applications

基  金:国家自然科学基金(No.61272097);上海市科技学术委员会重点项目(No.18511101600)。

摘  要:针对手势动作幅度较小难以被WiFi所感知到问题,利用菲涅尔衍射理论对最佳动作捕获位置进行推理以增强感知。针对在实际应用过程中需要判断手势何时发生的问题,提出基于高斯分布-Kmeans聚类的GD-Kmeans手势定位算法。在采集到包含手势的信道状态信息(CSI)数据后,使用低通滤波和DWT滤波进行数据降噪,通过定位算法对手势进行定位切出,最终基于动态时间规整(DTW)进行模板匹配实现对五种手势的判别,其准确率达到了93%。In view of the fact that the gesture motion is small, it is difficult to be perceived by WiFi. The Fresnel diffraction theory is used to reason the optimal motion capture position to enhance the perception. Aiming at the problem of judging when the gesture occurs in the actual application process, a gesture localization algorithm based on Gaussian DistributionKmeans(GD-Kmeans)clustering is proposed. After collecting the Channel State Information(CSI)data containing the gesture, the data are denoised by low-pass filter and Discrete Wavelet Transform(DWT)filter, and the gesture is positioned and cut by the localization algorithm, and finally the template matching is implemented based on the Dynamic Time Warping(DTW)to recognition the five gestures. The accuracy rate reached 93%.

关 键 词:WIFI 信道状态信息(CSI) 手势识别 无源感知 菲涅尔衍射理论 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象