基于CenterNet的小学生英文手写体区域检测  被引量:1

Detection of English handwriting area for primary school students based on CenterNet

在线阅读下载全文

作  者:张朝晖[1] 刘远铎 ZHANG Zhaohui;LIU Yuanduo(College of Computer and Cyber Security,Hebei Normal University,Shijiazhuang,Hebei 050024,China;Software College,Hebei Normal University,Shijiazhuang,Hebei 050024,China)

机构地区:[1]河北师范大学计算机与网络空间安全学院,河北石家庄050024 [2]河北师范大学软件学院,河北石家庄050024

出  处:《河北工业科技》2020年第5期291-299,共9页Hebei Journal of Industrial Science and Technology

基  金:国家自然科学基金(61702158);河北省自然科学基金(F2018205137,F2018205102)。

摘  要:为了探索智能批阅小学生作业的可行性,以小学生英文手写体为研究对象,建立了基于关键点的CenterNet模型。首先,针对低显存环境下CenterNet模型的构造与学习,提出了一种新的以组规范化(GN)替换批量规范化(BN)的池化模块结构改造方案,得到了改造版CenterNet模型;之后,将改造版CenterNet模型用于小学生英文手写体区域检测,实现了基于深度学习的英文手写体区域检测。将改造版CenterNet模型与原始CenterNet模型和CornerNet-Lite基准模型进行检测比较。实验表明2种版本CenterNet模型的英文手写体区域检测精度和平均召回率均高于基准模型的相应值,改造版CenterNet模型的AP0.5值甚至可达到73.1%,比基准模型高出近6%;此外,相比于基准模型,改造版的CenterNet模型的漏检情况更少,并在一定程度上有效抑制了误检。改造版的CenterNet模型不仅检测性能优于原始CenterNet模型,而且其学习过程更稳定、收敛更快,这为小学生作业智能批阅方案的设计提供了有价值的解决途径。To explore the feasibility of intelligent workbook review for primary school students,a CenterNet model based on the keypoints was established with primary English handwriting as the research object.Firstly,aiming at the construction and learning of CenterNet model in the case of low GPU(graphics processing unit)memory,a new scheme for pooling module structure modification was proposed by replacing BN(batch normalization)with GN(group normalization),and a modified CenterNet model was obtained.Then,the modified CenterNet model was used for the detection of English handwriting areas of primary school students,and the application of English handwriting area detection based on deep learning was realized.The comparison experiments with the original CenterNet model and the CornerNet-Lite baseline model show that the accuracy and average recall rate of the two versions of CenterNet model are higher than those of the baseline model,and the AP0.5 value of the modified CenterNet model can reach 73.1%,which is nearly 6%higher than that of CornerNet-Lite model.In addition,compared with the baseline model,the modified CenterNet model can get less missed detection and effectively suppress false detection to a certain extent.The improved CenterNet model not only has better detection performance than the original CenterNet model,but also has more stable learning process and faster convergence.This provides a valuable solution for the design of homework intelligent review scheme for primary school students.

关 键 词:计算机神经网络 英文手写体区域检测 目标检测 CenterNet 组规范化 池化模块结构 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象