检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jiang Fenfen Mei Shu'e Zhong Weijun 江芬芬;梅姝娥;仲伟俊(东南大学经济管理学院,南京211189)
机构地区:[1]School of Economics and Management, Southeast University, Nanjing 211189, China
出 处:《Journal of Southeast University(English Edition)》2020年第3期357-363,共7页东南大学学报(英文版)
基 金:The National Social Science Foundation of China(No.17BGL196)。
摘 要:A nested Stackelberg game among a provider of a product,a sender(existing customer),and a receiver(new customer)is developed to explore the optimal referral reward programs(RRPs)for innovative offerings.The results indicate that the provider should forsake RRPs and purely rely on customers'organic word-of-mouth communication under certain conditions.In particular,when the innovativeness of the referred product is extremely high,the provider should forsake RRPs completely,even though few customers will make organic referrals for the product.When the innovativeness is on other levels,the provider should make optimal RRPs decision depending on both the sender's persuasion effectiveness and the tie-strength between the two customers.Moreover,the optimal rewards increase with the innovativeness of the referred product when the provider opts to use RRPs.These results seem contrary to the existing empirical finding to some extent,and it is due to the high referral cost for making a successful referral for the high innovative offerings.通过构建关于产品提供商、已有消费者(推荐者)、潜在消费者(接收者)的Stackelberg博弈模型,研究了创新性产品的推荐奖励策略.研究结果表明,在一定条件下,产品提供商应该放弃奖励策略而单纯依赖消费者自发口碑.尤其在产品创新程度极高时,提供商应该完全不考虑奖励策略,但此时消费者也很少发生推荐行为.在其他创新水平下,提供商应进一步根据推荐者的劝说能力以及推荐者与接收者之间的关系强度,来进行推荐奖励策略的优化决策.在提供商选择奖励策略的情形下,最优奖励水平随产品创新程度的提高而增加.研究结论在一定程度上与已有实证结论相反,这是因为消费者成功推荐创新程度较高的产品,实际也要付出较高的推荐成本.
关 键 词:referral reward programs INNOVATIVENESS social value social media marketing Stackelberg game
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15