检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡志锋 袁宝华[2] 刘广海[3] Cai Zhifeng;Yuan Baohua;Liu Guanghai(College of Computer Science and Engineering,Sanjiang University,Nanjing 210000,Jiangsu,China;Department of Computer Science and Technology,Taizhou Institute of Sci.&Tech.,Nanjing University of Science and Technology,Taizhou 225300,Jiangsu,China;College of Computer Science and Information Engineering,Guangxi Normal University,Guilin 541004,Guangxi,China)
机构地区:[1]三江学院计算机科学与工程学院,江苏南京210000 [2]南京理工大学泰州科技学院计算机系,江苏泰州225300 [3]广西师范大学计算机科学与信息工程学院,广西桂林541004
出 处:《计算机应用与软件》2020年第10期175-179,243,共6页Computer Applications and Software
基 金:国家自然科学基金项目(61866005)。
摘 要:提出一种基于深度特征融合的图像分类方法。通过不同的深度学习预训练网络来获取图像的高层语义特征;采用Weighted Discriminant Correlation Analysis(WDCA)方法提取其转换矩阵及其融合矩阵;通过支持向量机分类器进行分类识别。在Caltech 256标准数据库上的实验表明,该方法不但能够有效地优化整合不同的深度特征,而且能够有效地降低特征的冗余信息,从而使融合后的特征具有很强的鉴别能力和低维特点。This paper presents an image classification method based on deep feature fusion.The high-level semantic features of images were obtained through different deep learning pre-training networks;the weighted discriminant correlation analysis(WDCA)method was used to extract the transformation matrix and its fusion matrix;the support vector machine classifier was used for classification and recognition.Experiments on the Caltech 256 standard database show that our method not only can effectively optimize the integration of different deep features,but also effectively reduce the redundant information of features,so that the fused features have strong discriminating ability and low dimensional characteristics.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147