基于灰狼算法的Simhash冗余数据检测算法  被引量:4

Simhash Redundant Data Detection Algorithm Based on Grey Wolf Algorithm

在线阅读下载全文

作  者:阮嘉琨 蔡延光[1] 蔡颢[2] 张丽 RUAN Jiakun;CAI Yanguang;CAI Hao;ZHANG Li(School of Automation,Guangdong University of Technology,Guangzhou 510006,China;Department of Health Science and Technology,Aalborg University,Aalborg 9220,Denmark)

机构地区:[1]广东工业大学自动化学院,广东广州510006 [2]奥尔堡大学健康科学与工程系,丹麦奥尔堡9920

出  处:《东莞理工学院学报》2020年第5期38-43,共6页Journal of Dongguan University of Technology

基  金:国家自然科学基金(61074147);广东省自然科学基金(S2011010005059);广东省教育部产学研结合项目(2012B091000171,2011B090400460);广东省科技计划项目(2012B050600028,2014B010118004,2016A050502060);广州市花都区科技计划项目(HD14ZD001);广州市科技计划项目(201604016055);广州市天河区科技计划项目(2018CX005)。

摘  要:高速公路智能交通数据记录量大且易产生冗余数据,使交通数据质量降低,不利于对交通数据分析和进一步应用。由于SNM算法过于依赖关键字的选取,计算的时间复杂度高,易造成计算的浪费导致对冗余数据检测效果不佳;而Simhash算法存在关键词对应的权重选取困难问题。因此,提出了基于灰狼算法改进的Simhash算法,对关键词对应的权重选择进行优化。使用SNM算法、Simhash算法以及改进后的Simhash算法对高速公路智能交通冗余数据样本集进行仿真实验。分析结果表明改进后的Simhash算法检测高速公路交通冗余数据记录的准确率、召回率以及F-Measure都有所提升,检测效果更好。Highway intelligent transportation data recordings are large and easy to produce redundant data,which makes traffic data quality less and is not conducive to traffic data analysis and further application.Because the SNM algorithm is too dependent on the selection of keywords,and the computational time complexity is high,the computational waste is caused to lead to poor data detection.The Simhash algorithm has the difficulty of selecting the weight corresponding to the keyword.Therefore,this paper puts forward simhash algorithm based on the improvement of grey wolf algorithm,and optimizes the weight selection corresponding to the keywords.Using SNM algorithm,Simhash algorithm and improved Simhash algorithm,the simulation experiment of the data sample set of highway intelligent traffic redundancy was carried out.The results show that the improved Simhash algorithm detects the accuracy,recall rate and F-Measure record of highway traffic redundancy data,and the detection effect is better.

关 键 词:智能交通 高速公路 冗余数据检测 灰狼算法 Simhash算法 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象