检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭娅婷 杨君[1] 甘露 GUO Yating;YANG Jun;GAN Lu(Engineering Research Center qf Metallurgical Automation and Measurement Technology,Ministry qf Education,Wuhan University of Science and Technology,Wuhan 430081,China)
机构地区:[1]武汉科技大学冶金自动化检测技术教育部工程研究中心,武汉430081
出 处:《传感技术学报》2020年第7期1027-1032,共6页Chinese Journal of Sensors and Actuators
基 金:国家自然科学基金项目(61701354)。
摘 要:在室内定位系统中,基于接收信号强度指示(RSSI)测距定位系统接收到的信号会因环境的不确定性出现不可预测的随机变化,行人航位推算(PDR)定位系统存在错误地估计传感器的参数及左右脚运动不一致等产生累积误差的问题。针对上述问题,提出一种基于改进PDR与RSSI融合的定位算法,根据PDR定位的递归特性校正估计传感器的参数,同时进行左右脚坐标数据融合,在此基础上将扩展卡尔曼滤波器(EKF)作为RSSI和PDR定位的融合滤波器,以降低PDR累计误差,从而提高定位精度,获得系统的最优定位结果。实验结果表明,该融合定位算法有效地提高了定位精度。In the indoor positioning system,based on the received signal strength indication(RSSI)the signal received by the ranging and positioning system will undergo unpredictable random changes due to the uncertainty of the environment.The pedestrian dead reckoning(PDR)positioning system has incorrectly estimate of the sensor's parameters and the inconsistent movement of the left and right feet produced cumulative error problem.In view of the above problems,a positioning algorithm based on the fusion of improved PDR and RSSI is proposed.The parameters of the estimated sensor are corrected according to the recursive characteristics of PDR positioning,and the data of the left and right foot coordinates are fused.On this basis,the Extented Kalman filter(EKF)will be used as a fusion filter for RSSI and PDR positioning to reduce the cumulative error of PDR,thereby improving positioning accuracy and obtaining the optimal positioning result of the system.Experimental results show that the fusion positioning algorithm effectively improves the positioning accuracy.
关 键 词:室内定位 扩展卡尔曼滤波 行人航位推算 融合定位
分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145