变区域上p-Laplacian型复Ginzburg-Landau方程的拉回吸引子  

Pullback attractors for the complex Ginzburg-Landau equation with p-Laplacian on time-varying domains

在线阅读下载全文

作  者:李洪芳 周峰 LI Hongfang;ZHOU Feng(College of Science,China University of Petroleum(East China),266580,Qingdao,Shandong,PRC)

机构地区:[1]中国石油大学(华东)理学院,山东省青岛市266580

出  处:《曲阜师范大学学报(自然科学版)》2020年第4期1-9,共9页Journal of Qufu Normal University(Natural Science)

基  金:National Natural Science Foundation of China(11601522);Fundamental Research Funds for the Central Universities of China(17CX02036A).

摘  要:考虑具有p-Laplacian的复Ginzburg-Landau方程∂Tu-(λ+iα)Δpu+(κ+iβ)|u|q-2 u-γu=f(t)在变区域上的动力学行为问题,其中q≥2满足条件〔α/λ,β/κ〕∈S1〔1/Cp〕∩S〔1C/q,1/Cq〕。在空间区域有界且变化满足单调性条件下,证明了满足能量等式变分解的存在唯一性.进一步,建立了由此类弱解形成的非自治系统的D-拉回吸引子.In this paper,the long-time behavior of the following complex Ginzburg-Landau equation with p-Laplacian∂Tu-(λ+iα)Δpu+(κ+iβ)|u|q 2 u-γu=f(t)on time-varying domains without any upper restriction on q≥2 under the assumptions〔α/λ,β/κ〕∈S1〔1/Cp〕∩S〔1C/q,1/Cq〕has been studied.The existence and uniqueness of a variational solution satisfying energy equality,under the assumption that the spatial domains are bounded and increase with time has been proved.Moreover,the D-pullback attractor for thenon-autonomous dynamical system generated by this class of solutions has been established.

关 键 词:复GINZBURG-LANDAU方程 p-拉普拉斯 变区域 D-拉回吸引子 

分 类 号:O193[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象