基于条件生成对抗网络的乳腺上皮和间质区域自动分割  

Automatic segmentation of breast epithelial and stromal regions based on conditional generative adversarial network

在线阅读下载全文

作  者:张泽林[1] 徐军[1] ZHANG Zelin;XU Jun(Jiangsu Key Laboratory of Big Data Analysis Technology(Nanjing University of Information Science and Technology),Nanjing Jiangsu 210044,China)

机构地区:[1]江苏省大数据分析技术重点实验室(南京信息工程大学),南京210044

出  处:《计算机应用》2020年第10期2910-2916,共7页journal of Computer Applications

基  金:国家自然科学基金资助项目(U1809205,61771249);江苏省自然科学基金资助项目(BK20181411)。

摘  要:乳腺病理组织图像中上皮和间质区域的自动分割对乳腺癌的诊断和治疗具有非常重要的临床意义。但是由于乳腺组织病理图像中上皮和间质区域具有高度复杂性,因此一般的分割模型很难只根据提供的分割标记来有效地训练,并对两种区域进行快速、准确的分割。为此,提出一种基于条件对抗网络(cGAN)的上皮和间质分割条件对抗网络(EPScGAN)模型。在EPScGAN中,判别器的判别机制为生成器的训练提供了一个可训练的损失函数,来更加准确地衡量出生成器网络的分割结果输出和真实标记之间的误差,从而更好地指导生成器的训练。从荷兰癌症研究所(NKI)和温哥华综合医院(VGH)两个机构提供的专家标记的乳腺病理图像数据集中随机裁剪出1286张尺寸为512×512的图像作为实验数据集,然后将该数据集按照7∶3的比例划分为训练集和测试集对EPScGAN模型进行训练和测试。结果表明,EPScGAN模型在测试集的平均交并比(mIoU)为78.12%,和其他6种流行的深度学习分割模型相比较,提出的EPScGAN具有更好的分割性能。The automatic segmentation of epithelial and stromal regions in breast pathological images has very important clinical significance for the diagnosis and treatment of breast cancer.However,due to the high complexity of epithelial and stromal regions in breast tissue pathological images,it is difficult for general segmentation models to effectively train the model based on the provided segmentation labels only,and perform fast and accurate segmentation of the two regions.Therefore,based on conditional Generative Adversarial Network(cGAN),the EPithelium and Stroma segmentation conditional Generative Adversarial Network(EPScGAN)model was proposed.In EPScGAN,the discrimination mechanism of the discriminator provided a trainable loss function for the training of the generator,in order to measure the error between the segmentation result outputs of the generator and the real labels more accurately,so as to better guide the generator training.Total of 1286 images with the size of 512×512 were randomly cropped as an experimental dataset from the expertlabeled breast pathological image datasets provided by the Netherlands Cancer Institute(NKI)and the Vancouver General Hospital(VGH).Then the dataset was divided into the training set and the test set according to the ratio of 7∶3 to train and test the EPScGAN model.Experimental results show that,the mean Intersection over Union(mIoU)of the EPScGAN model on the test set is 78.12%,and compared with other 6 popular deep learning segmentation models,EPScGAN model has better segmentation performance.

关 键 词:深度学习 条件生成对抗网络 乳腺病理组织图像 上皮和间质区域 图像分割 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象