基于轨迹数据的电动出租车充电需求分析  被引量:1

Analysis on Electric Taxi Charging Demand Based on Trajectory Data

在线阅读下载全文

作  者:朱攀 吴升[1,2,3] Zhu Pan;Wu Sheng(Academy of Digital China(Fujian),Fuzhou University,Fuzhou Fujian 350003,China;Key Laboratory of Spatial Data Mining and Information Sharing,the Ministry of Education,Fuzhou Fujian 350003,China;Fujian Collaborative Innovation Center for Big Data Applications in Governments,Fuzhou Fujian 350002,China)

机构地区:[1]福州大学数字中国研究院,福建福州350003 [2]空间数据挖掘与信息共享教育部重点实验室,福建福州350003 [3]海西政务大数据应用协同创新中心,福建福州350002

出  处:《城市建筑》2020年第17期7-10,共4页Urbanism and Architecture

摘  要:电动出租车充电需求分析是规划布局公共充电设施的基础,为此提出一种基于轨迹数据的电动出租车充电需求分析方法。本文通过统计和分析出租车GPS数据,拟合出租车出行链时空特征量的概率分布,利用蒙特卡洛模拟方法和轮盘赌方法抽取各特征量,构建电动出租车出行链。然后结合出租车换班特征,分别分析大班和小班两种情况下电动出租车充电需求的时空分布。利用北京市2012年的出租车GPS轨迹数据进行方法应用及案例分析。结果表明,使用该方法可较准确地模拟北京市出租车的出行特征,充电需求的时空分布较为合理。The analysis on electric taxi charging demand is the basis for planning and layout of public charging facilities. To this end, a method for analyzing the charging demand of electric taxis based on trajectory data is proposed. Based on the statistical analysis of the taxi GPS data, the probability distribution of the spatio-temporal feature quantity of the taxi travel chain is fitted, and each feature quantity is extracted using Monte Carlo simulation method and roulette method to construct an electric taxi travel chain. Then, combining the characteristics of taxi shifts, the spatio-temporal distribution of the charging demand for electric taxis in both large and small classes is analyzed. Using the GPS trajectory data of Beijing in 2012, the method application and case analysis were carried out. The results show that using this method can more accurately simulate the travel characteristics of taxis in Beijing, and the space-time distribution of charging demand is more reasonable.

关 键 词:电动出租车 充电需求 出行链 蒙特卡洛模拟 轮盘赌算法 

分 类 号:U495[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象