基于遗传算法的输电线路弧垂计算非线性自修正方法  被引量:5

Nonlinear Self-correction Method of Transmission Line Sag Calculation Based on Genetic Algorithm

在线阅读下载全文

作  者:刘沛轩 程养春 岳楹超 戴沅 LIU Peixuan;CHENG Yangchun;YUE Yingchao;DAI Yuan(Beijing Key Laboratory of High Voltage&EMC,North China Electric Power University,Beijing 102206,China;State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Beijing 102206,China;Electric Power Research Institute of Guangdong Power Grid Co.,Ltd.,Guangzhou,Guangdong 510080,China)

机构地区:[1]高电压与电磁兼容北京市重点实验室(华北电力大学),北京102206 [2]新能源电力系统国家重点实验室(华北电力大学),北京102206 [3]广东电网有限责任公司电力科学研究院,广东广州510080

出  处:《广东电力》2020年第9期147-153,共7页Guangdong Electric Power

基  金:国家自然科学基金项目(51977076)。

摘  要:现有的输电线路弧垂测量方式均存在不可避免的系统性误差,并缺乏准确高效的误差修正手段,为此提出利用线路倾角与温度数据可分别独立计算线路弧垂的特点,使其相互对照,建立系统误差的求解模型,以非线性参数估计准则为指导,通过遗传算法迭代求解系统误差;最后利用DTRT-1型在线监测装置采集现场数据,并验证所提方法的有效性。结果表明:利用所提的输电线路弧垂计算及修正算法,计算1年中的线路弧垂数据时,平均误差小于1%,均方根误差小于5%,故所提的算法具有良好的准确性和稳定性。There are inevitable systematic errors in the existing methods of sag measurement,and there is a lack of accurate and efficient means of error correction.This paper proposes to respectively use the line inclination angles and temperature data to calculate the characteristics of the line sag so as to establish the solution model of the system error.Under the guidance of nonlinear parameter estimation criterion,the system error is solved iteratively by means of the genetic algorithm.Finally,the ppaer uses the DTRT-1 on-line monitoring device to collect field data to verify the effectiveness of the proposed method.The results show that the average error is less than 1%and the RMS error is less than 5%by using the calculation method and the correction method to figure up the line sag data in one year,which proves favorable accuracy and stability of the proposed algorithm.

关 键 词:输电线路 弧垂 系统误差 非线性参数估计 遗传算法 

分 类 号:TM752.1[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象